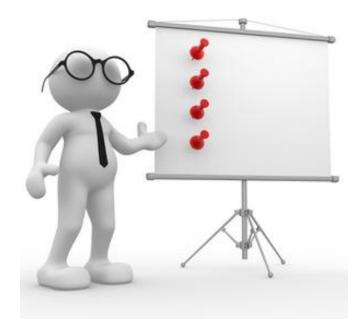


How motivated are Irish secondary students to study science?

Beulah McManus and Peter Childs 21st March 2015

National Centre for STEM Education


Rationale

- There has been growing concern for some time about students' decline in interest and motivation to study science at school. There appears to be a "drop-off" from science after the junior cycle with students not opting to study it at senior cycle, particularly the physical sciences.
- Is it possible to identify factors that affect this?
- Can we engage the disengaged?

Structure of Presentation

- Background of project
- Methodology
- Significant findings
- Conclusions
- Future Work

Background to the Project (1)

Too many students are being turned off science too soon!

There are two dimensions to the problem:

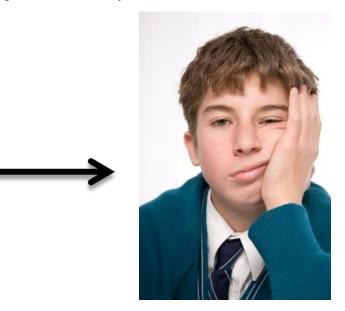
- **I. Engagement and motivation** enduring concern that students do not find science at school interesting.
- Participation once period of compulsory study has ended, decisions are made over subject choices (and students appear to have already "switched-off" by that stage).

(Royal Society of Chemistry 2008)

Background to the Project (2)

- The Relevance of Science Education (ROSE) project report indicates that school science fails in many ways – "school science is less interesting than other subjects" (Sjøberg and Schreiner 2010).
- 2nd year students in Ireland (13-14 years of age) report that they like subjects where the learning is organised in an active, project-like way – but science was not listed as one of these subjects (Smyth et al. 2006).

Background to the Project (3)


- Young students enter secondary school with positive attitudes towards science, however, this declines most sharply between the ages of 11 and 14 (Bennett and Hogarth 2009).
- Trends in International Mathematics and Science Study (TIMSS) 2011 report:

4 th Grade (9-10yrs)	Like Learning Science	8 th Grade (13-14yrs)
53% agree	>	35% agree

Background to the Project (4)

> 2nd year (13-14 years of age) is the critical point in Ireland where students either engage/disengage from schooling – marked gender differences here where males tend to disengage moreso than females (Smyth 2009).

What do we know about motivation?

'Catch-all' term – interest, fun, enjoyment and engagement.

Goal Orientation – performance/extrinsic goals or mastery/intrinsic goals. Learning Environment – teaching strategies/class activities/ teacher-student interactions

- Self-efficacy
- Individual's goal orientation
- Task value
- Learning environment

factors

Dominate students' learning motivation (Pintrich and Schunk 1996; Brophy 1998;

Relevance, importance and usefulness of task Tuan et al. 2005).

Control of learning beliefs mindset

Learning

Why is motivation important?

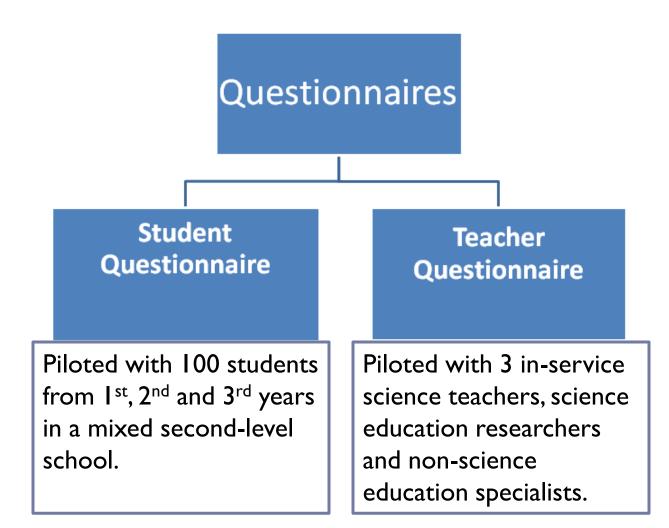
It also plays an important role in:

- Students' conceptual change process (Lee 1989, Pintrich et al. 1993, Lee and Brophy 1996).
- Critical thinking and learning strategies (Garcia and Pintrich 1992, Wolters 1999, Kuyper et al. 2000)
- Science learning achievement (Napier and Riley 1985).

How do we measure motivation

- Not directly observable difficult to quantify it not a unitary phenomenon.
- notivation to quantify it – searchers have stressed the
- Motivation is content specific researchers have stressed the importance of investigating students' motivation when studying specific subject content areas (Blumenfield and Meece 1988; Weiner 1990; Blumenfield 1992, Lee and Anderson 1993; Lee and Brophy 1996).
- Self-report measures tend to produce generalised responses and may be developmentally inappropriate for young people (Tuan et al. 2005).

Science Motivation Questionnaires


- MSLQ (Pintrich et al. 1991) was designed to assess thirdlevel students' motivational orientations and learning strategies.
- MoLE (Bolte 2006) examines the difference between students' REAL and IDEAL learning environments in their science classes.
- SMTSL (Tuan et al. 2005) used to investigate student learning motivation in second-level science.

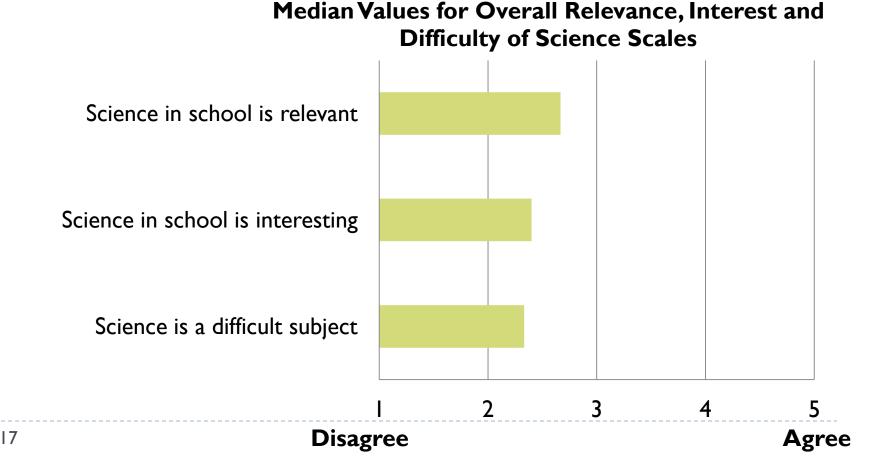
Research Questions for My Project

- What factors affect student motivation in lower secondary science from the perspective of both students and teachers?
- If students' motivation in lower secondary science does decline, at what stage does this happen?

Methodology

Sampling

- I00 schools were chosen using a stratified sampling approach (Munster region acted as sampling frame – it makes up 29.4% of the total sample in Ireland and is representative of the total).
- ▶ 3 teacher questionnaires were sent to each school.
- Confirmation of:
 - I. Involvement of students
 - 2. Number of students


was required before sending out student questionnaires.

Nature of the Sample

Breakdown	Total No.	Gender	
Schools	47	All-girls = 10	Secondary = 24
		All-boys = 5	Vocational = 20
		Co-ed =32	Comm & comp = 3
Teachers	74	Female = 48	~65%
		Male = 26	~35%
Students	1427	Female = 758	~53%
		Male = 662	~46.5%
		Missing = 7	~0.5%

Student Questionnaire: Results (1)

Generally, lower secondary science students do not find science in school relevant, interesting or difficult (n= 1427).

Relevance

Interest

Difficulty

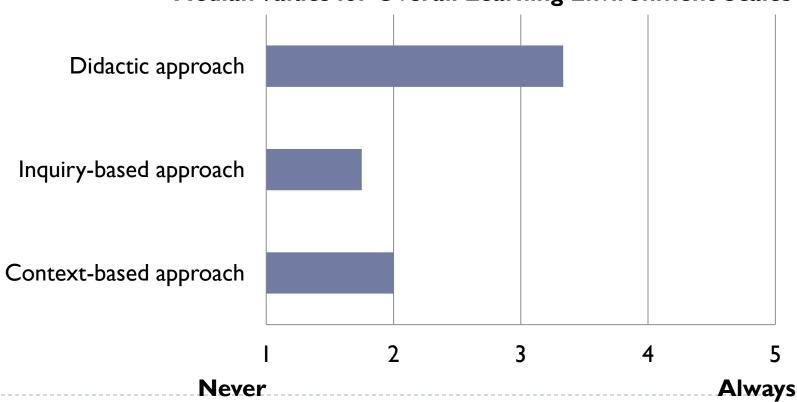
Students' opinions about the "**point of studying science in school'** differed significantly depending on the **year** group (p=0.001).

The older the year group, the less the "point of studying science in school". Students who feel that they "**would enjoy school more if there were no science classes**" differed significantly with **year** group (p=0.001)

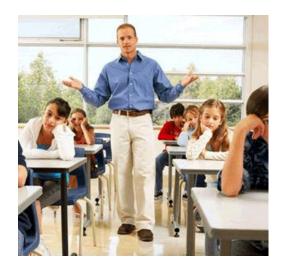
The older the year group, the more they agreed with the statement.

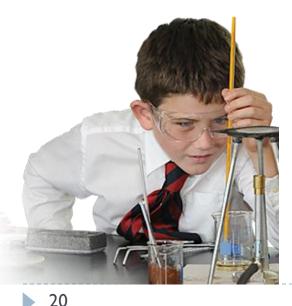
No sig. diff. between year group and how **boring** students find science class (p=0.738). Sig. diff between **year** group and students of the opinion that "**science is a difficult subject"** (p=0.005).

Most difficult


lstYear 3rdYear

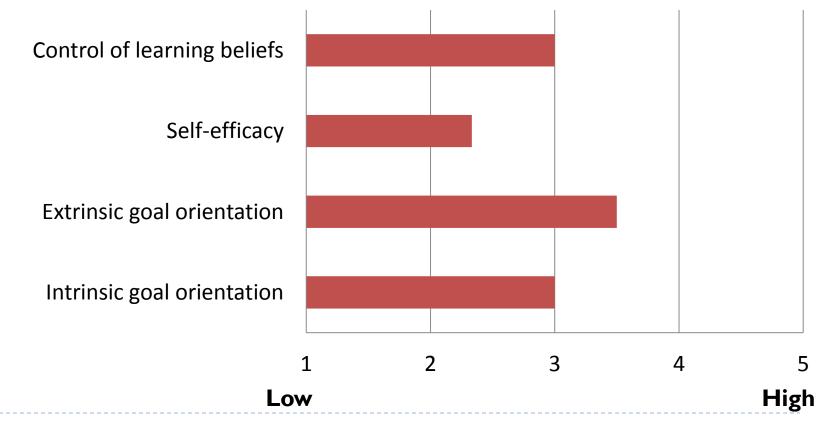
Least difficult


2nd Year


Student Questionnaire: Results (2)

Students are most exposed to didactic learning environments (n= 1427).

Median Values for Overall Learning Environment Scales



- 1. 80.5% of students find that most/all science classes are spent listening "to the teacher explain science ideas" this does not differ significantly with year group (p=0.146).
 - 2. 37.2% of students "think about a science problem <u>before</u> it is explained to [them] by [their] **teacher**" in most/all classes - again no sig. diff. with year group (p=0.466).
- 3. 30% of students "get the chance to do hands-on, investigating work before looking at the theory" in most/all classes – does differ sig. with year group (p=0.004).

 I^{st} years $\longrightarrow 3^{rd}$ years $\longrightarrow 2^{nd}$ years

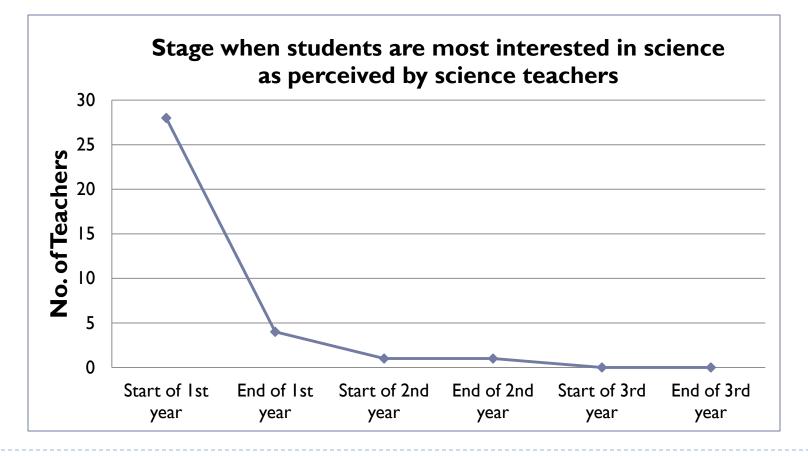
Student Questionnaire: Results (3)

Students show higher levels of extrinsic goal motivation than the other motivational variables. (n= 1427).

Median Values for Motivation Orientational Scales

EXTRINSIC GOALS

"My main goal in science class is to get a good grade" – **no** sig. diff. with **year group** (p=0.145) or **gender** (p=0.133).


SELF-EFFICACY

"I am not as good at science as most of the other students in my class" – sig. diff. with gender (p>0.000).

Males show higher levels of self-efficacy than females.

Teacher Questionnaire: Results

The consensus from teachers is that "students' interest in science declines as they progress from 1st to 3rd year".

General Conclusions (1)

- Students' interest in lower secondary science declines with increasing year in school as perceived by students and teachers.
- 2nd year science students (13-14 years of age) find science easier than 1st and 3rd year students.
- Didactic teaching methods do not vary from 1st year to 3rd year - students spend most of their class time "listening to their science teacher".

General Conclusions (2)

- Inquiry-based learning environments (teaching strategies and classroom activities) are observed least often in 3rd year science classrooms (when compared to didactic and context-based environments).
- Lower secondary science students are motivated most by their extrinsic goal orientation – no difference for gender or year group.
- Generally, students show low levels of self-efficacy but males show higher levels of self-efficacy than females.

Future Work

Increasing sample size of the teacher questionnaires.

- Qualitative study with teacher interviews and student focus groups from 1st, 2nd and 3rd year groups.
- Critical analysis of the methods of measuring motivation.

Thank you for your attention.

Questions?

References (1)

- Abrahams, I. (2009) 'Does practical work really motivate? A study of the affective value of practical work in secondary school science', International Journal of Science Education, 31(17), 2335–2353.
- Bennett, J. and Hogarth, S. (2009) 'Would you want to talk to a scientist at a party? High school students' attitudes to school science and to science', *International Journal of Science Education*, 31, 1975-1998.
- Blumenfeld, P.C. (1992) 'Classroom learning and motivation: Clarity and expanding goal theory', *Journal of Educational Psychology*, 84, 272–281.
- Blumenfeld, P.C., & Meece, J.L. (1988) 'Task factors, teacher behaviour, and students' involvement and use of learning strategies in science', The Elementary School Journal, 88, 235–250.
- Bolte, C. (2006) 'As good as it gets: The MoLE-instrument for the evaluation of science instruction', Proceedings of the Annual Meeting of the National Association for the Research on Science Education (NARST), San Francisco, USA, April 2006.
- Brophy, J. (1998) Motivating Students to Learn, Madison, WI: McGraw Hill.
- DeWitt, J. and Osborne, J. (2008) 'Engaging students with science: In their own words', School Science Review, 30(331), 109–116.
- Garcia, T. and Pintrich, P.R. (1992) 'Critical thinking and its relationship to motivation, learning strategies, and classroom experience', *Paper presented at the Annual Meeting of the American Psychological Association*, Washington, DC, August.
- Kuyper, H., van der Werf, M.P.C. and Lubbers, M.J. (2000) 'Motivation, meta-cognition and self-regulation as predictors of long term educational attainment', *Educational Research and Evaluation*, 6(3), 181–201.

References (2)

- Lee, O. (1989)'Motivation to learning science in middle school classrooms:University Microfilms International', Unpublished doctoral dissertation, Michigan State University, East Lansing.
- Lee, O. and Anderson, C.W. (1993) 'Task engagement and conceptual change in middle school science classrooms', American Educational Research Journal, 30(3), 585–610.
- Lee, O. and Brophy, J. (1996) 'Motivational patterns observed in sixth-grade science classrooms', Journal of Research in Science Teaching, 33(3), 585–610.
- Lyons, T. (2006) 'Different countries, same science classes: Students' experiences of school science in their own words', International Journal of Science Education, 28(6), 591–613.
- Martin, M.O., Mullis, I.V.S., Foy, P. and Stanco, G.M. (2012) TIMSS 2011 International Results in Science, Chestnut Hill, MA: TIMSS & PIRLS International Study Center.
- Napier, J.D. and Riley, J.P. (1985) 'Relationship between affective determinants and achievement in science for seventeen-year-olds', Journal of Research in Science Teaching, 22(4), 365–383.
- Pintrich, P.R., Marx, R.W. and Boyle, R.A. (1993) 'Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change', *Review of Educational Research*, 63(2), 167–199.
- Pintrich, P.R., and Schunk, D.H. (1996) Motivation in Education: Theory, Research and Applications, 2nd ed., Englewood Cliffs, NJ: Merrill Company.
- Pintrich, P.R., Smith, D.A.F., Garcia, T. and McKeachie, W.J. (1991) 'A Manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ)', Ann Arbor, MI: National Center for Research to Improve Postsecondary Teaching and Learning.

References (3)

- Royal Society of Chemistry (2008) A State of the Nation Report: Science and Mathematics Education, 14-19, London: The Royal Society.
- Sjøberg, S. and Schreiner, C. (2010) The Rose Project: An Overview and Key Findings [online], available: <u>http://roseproject.no/network/countries/norway/eng/nor-Sjoberg-Schreiner-overview-2010.pdf</u> [accessed 14 Dec 2013].
- Smyth, E. (2009) 'Junior cycle education: Insights from a longitudinal study of pupils', ESRI Research Bulletin, 4(1).
- Smyth, E., Dunne, A., McCoy, S. and Darmody, M. (2006) Pathways Through the Junior Cycle: The Experiences of Second Year Students, Dublin: The Liffey Press.
- Toplis, R. (2011) 'Student's views about secondary school science lessons: The role of practical work', Research in Science Education, 42(3), 531-549.
- Tuan, H. L., Chin, C. C., and Shieh, S. H. (2005) 'The development of a questionnaire to measure students' motivation towards science learning', International Journal of Science Education, 27(6), 639-654.
- Weiner, B. (1990) 'History of motivational research in education', Journal of Educational Psychology, 82(4), 616–622.
- Wolters, C.A. (1999) 'The relation between high school students' motivational regulation and their use of learning strategies, effort, and classroom performance', *Learning and Individual Differences*, 11(3), 281–300.

Student Questionnaire Design

Part of Questionnaire	Scales	α
Attitudes towards science	Interestingness of science (5 items)	0.875
	Relevance of science (3 items)	0.659
	Difficulty of science (3 items)	0.817
Teaching approaches	Context-based approach (4 items)	0.649
used in science class	Inquiry-based approach (4 items)	0.582
	Didactic approach (3 items)	0.546
Motivation in science	Intrinsic goal orientation (3 items)	0.740
class	Extrinsic goal orientation (2 items)	0.622
	Self-efficacy (3 items)	0.703
	Control of learning beliefs (3 items)	0.724
Career aspirations in	Interest in pursuing a career in science (7	0.849
science	items)	