NEW PERSPECTIVES IN SCIENCE EDUCATION 16-19 March 2017, Florence, Italy

Usage FlexPDE Package in the Courses of Mathematical Modeling and Mechanics

Olga Pustovalova, Mikhail Karyakin

I.I.Vorovich Institute of Mathematics, Mechanics and Computer Science Southern Federal University, Rostov-on-Don, Russia

Contents

Educational tasks for students. Examples

Additional tasks

Conclusion

Southern Federal University, Russia

Well known Finite Element Packages

https://www.simuleon.com/simulia-abaqus/abaqus-explicit/ http://cae-expert.ru/product/ansys-cfx

HABAQUS

Superior Finite Element Analysis Solutions

MSC Nastran Structural & Multidiscipline FEA

Southern Federal University, Russia

FlexPDE Package

Ansys | Abaqus | Nastran

Purposes and Possibilities

The Course involves solving educational tasks using finite element packages

Using the finite element package FlexPDE allows to

- solve the problem described by differential equations in partial derivatives of the 1st and 2nd of orders
- determine the geometry and boundary conditions
- set accuracy of the solution
- set output method results

Necessary Educational Background

- Differential equations
- Numerical methods
- Skills in Maple and MatLab packages
- Equations of mathematical physics
- Basics of theoretical mechanics
- Fundamentals of linear elasticity

- Stationary thermal conductivity
- Transient thermal conductivity
- Frequency analysis
- Determination of stress-strain state in the static problems of elasticity

Areas of science where we can apply FlexPDE

- Physics
- Mechanics
- Chemistry
- Biology

Planetary motion Strain-Stress Solution Reaction-diffusion Microorganisms Colony Growth

The Problems described by the Poisson equation

- Thermal conductivity
- Hydraulics
- Electrostatics
- Physics

Poisson's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$$

Main sections of FlexPDE script

TITLE COORDINATES VARIABLES DEFINITIONS **EQUATIONS** BOUNDARIES **MONITORS PLOTS END**

- name of the task
- coordinate system
- variable of differential equations
- parameters of the problem
- differential equations
- boundaries and boundary conditions
- intermediate results
- final results
- end of program

The example of FlexPDE script

```
TITLE 'Stationary Heat Conductivity'
COORDINATES
   cartesian3
SELECT
painted
VARIABLES u
DEFINITIONS
  K = 0.1
              { conductivity }
   R0 = 1
              { radius }
  H0 = 100 { total heat }
   heat =H0*exp(-x^2-y^2-z^2) { volume heat source }
EQUATIONS
   div(K^*grad(u)) + heat = 0
 extrusion
  surface z = -sqrt(R0^2 - (x^2+y^2)) \{ the bottom hemisphere \}
  surface z=0
  surface z = sqrt(R0^2 - (x^2 + y^2)) \{ the top hemisphere \}
BOUNDARIES
   surface 1 value(u) = 0
   surface 3 \text{ value}(u) = 0
   Region 1
    laver 1 K=0.1
    layer 2 K=0.5
    start (R0,0) arc(center=0,0) angle=360
PLOTS
   grid(x,y,z)
   contour(u) on x=0
END
```


Examples

- 1. Saint-Venant's principle
- 2. Typical tasks for students:
 - ✓ The Kirsch problem
 - ✓ Frequency analysis

Example 1. Saint-Venant's principle

Example 2. The Kirsch problem

Tension of the Bar with a Hole

Example 2. The Kirsch problem

Tension of the Bar with a Hole

Southern Federal University, Russia

Example 2. The Kirsch problem

Individual tasks: to analyze the dependence of stress-strain state from

- geometrical parameters
- physical parameters
- boundary conditions

La 1st octave. Frequency - 440 Hz

Tuning fork with resonator box

3D model of the fork

Equations of motion

Cauchy relations

$$\nabla \cdot \mathbf{\sigma} + \rho \mathbf{f} = \rho \frac{\partial^2 \mathbf{u}}{\partial t^2}$$
$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Hooke's law

$$\sigma_{ij} = \lambda \theta + 2\mu \delta_{ij} \varepsilon_{ij}$$

Boundary conditions

- no forces on the side surface
- no motion at the sealing

Stationary problem

$$\mathbf{u}(x, y, z, t) = \mathbf{u}(x, y, z)\cos(\omega t)$$

 $\mathbf{n} \cdot \boldsymbol{\sigma} = 0$ $\mathbf{u} = 0$

COORDINATES

cartesian3 SELECT {numbers of frecuency} modes = 3 VARIABLES U1 U2 U3 { displacements } DEFINITIONS nu=0.3 E=200e9 lambda=E/(1+nu)/(1-2*nu) mu=E/(2*(1+nu))

```
{ Cauchy relation }
E11 = dx(U1)
E12 =(dy(U1) + dx(U2))/2
```

• • •

. . .

. . .

{ Hooke's law } S11=lambda*((1-nu)*E11+ nu*E22) S12=mu*E12

EQUATIONS

U1: dx(S11) + dy(S12) + dz(S31) + Omega*rho*U = 0U2: dx(S12) + dy(S22) + dz(S32) + Omega*rho*V = 0U3: dx(S13) + dy(S23) + dz(S33) + Omega*rho*W = 0

EXTRUSION z = 0, hBOUNDARIES region 1 start(0,0) { Boundary conditions } load(U1)=0 load(U2)=0 load(U3)=0 line to... PLOTS grid(x+U1, y+U2, z+U3) as "Shape"... summary report lambda END

Possible complicating

Individual tasks: to analyze the dependence of frequency from

- geometrical parameters
- physical parameters
- boundary conditions

Resonator

3D

Additional tasks

Building of Geometry

Export and import of Data

Additional tasks

Influence of grid parameters on the accuracy of the solution

- ✓ CELL SIZE CONTROL
- ✓ MESH_DENSITY
- ✓ MESH_SPACING
- ✓ RESOLVE
- ✓ BDRY_DENSITY
- ✓ ERRLIM

Analysis and further processing of the results

Additional tasks

Influence of grid parameters on the accuracy of the solution

Status	
CPU time	0:08
Grid	1
Nodes	6243
Cells	4026
Unknowns	6243
Mem(K)	54349
RMS Error	1.228e-3
Max Error	4.647e-3
DONE	
_	
Status	
CPU time	2:05
Grid	8
Nodes	270194
Cells	188346
Unknowns	270194
Mem(K)	475046
Mem(K) RMS Error	475046 5.765e-5
Mem(K) RMS Error Max Error	475046 5.765e-5 4.154e-4

select
 { error limit }
 errlim=1e-2
 { mesh size }
 ngrid=2

select
{ error limit }
errlim=1e-4
{ mesh size }
ngrid=4

Conclusion

So why we like FlexPDE package so much?

- Student version is free
- The transparency of BVP solving allows to
 - better absorb the course material
 - understand the essence of the problem
 - propose new ideas and methods of solution
 - attract additional math for solving complex problems

THANK YOU!

Olga Pustovalova, ogpustovalova@sfedu.ru Mikhail Karyakin, karyakin@sfedu.ru

I.I.Vorovich Institute of Mathematics, Mechanics and Computer Science Southern Federal University, Rostov-on-Don, Russia