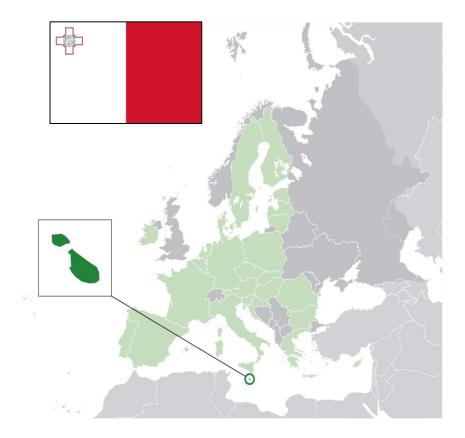


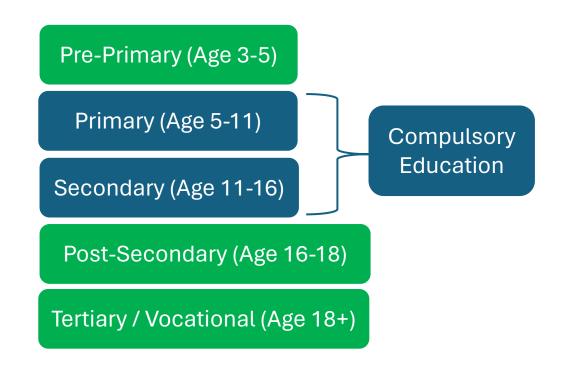
University of Malta Courses with Intermediate / Advanced Chemistry as a Requirement and/or Option: An Analysis of Students' Choices

Edward Thake Martin Musumeci


Contents

- Malta Landscape
- Theoretical Frameworks
- Research Methodology
- Results
- Analysis and Discussion
- Conclusion and Recommendations
- References

Malta


- Area: 316km² (122 sq. mi)
- Location: 80 km (50 mi) south of Sicily, Italy and 284 km (176 mi) east of Tunisia
- Population: 519,562 (census 2021)
- EU member since 2004

Malta's Education System

- Regulated by the Education Act of 1998
- Compulsory Education between ages of 5-16
- Post-secondary education in sixth forms and tertiary / vocational education by universities and technical colleges

BOORT

University of Malta (UM)

- Public university in Malta
- Student population 11,500 including 700 international students.
- 14 Faculties and 18 Institutes

UM Entry Requirements

- Post-Secondary Qualifications
 - 2 Advanced Matriculation (AM) subjects
 - 3 Intermediate Matriculation (IM) subjects
 - Systems of Knowledge (SOK)

L-Università ta' Malta

*The above subjects need to include a language, science, and humanistic subject.

Aims of the Research Study

- To analyse course preferences of students with advanced matriculation (AM) and intermediate matriculation (IM) level chemistry in their 1st 3rd year of university.
- To investigate influences behind students' enrolment choices, motivation in choosing UM course with chemistry as a requirement and / or option.
- To explore whether chemistry is perceived to give students wider career choices in the labour market.

Key Research Questions

What motivates University students to choose tertiary courses specifying IM / AM level Chemistry?

Does Chemistry at IM / AM level act as a restriction or an opening for student career options?

Theoretical Frameworks

Vocational Types Theory (VTT)	Sheds light on psychological aspects of career preferences, categorises chemists as investigative thinkers and realistic doers [8].		
Social Cognitive Career Theory (SCCT)	Intricate interplay of personal, behavioural, and environmental factors in academic and career decisions [10-13].		
Rational Choice Theory (RCT)	Suggests that students select a course based on personal preferences, beliefs, and limitations.		

-

PARTY NAMES IN COLUMN

Research Methodology

- A mixed methods approach was adopted.
- Research instruments: analysis of statistical data and selfadministered questionnaire.
- The questionnaires were distributed among 3 stakeholders:
 - UM students (1st 3rd Year with IM/AM chemistry qualification)
 - Sixth Form Chemistry teachers
 - UM course coordinators (of courses of Interest)

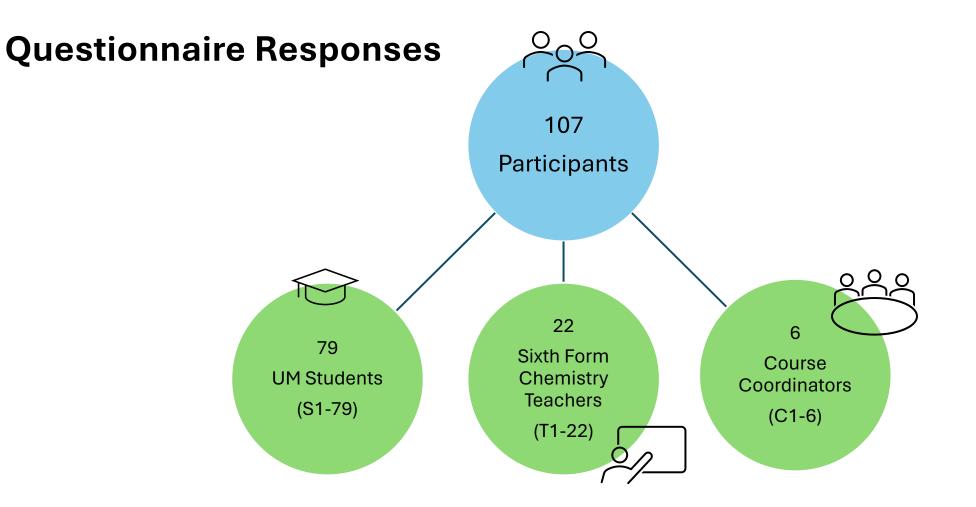
Method

- **Online Questionnaire Sections**
- The online questionnaire consisted of 17 questions, divided into 4 sections.
- Participants were contacted through the UM Registrar's office, social media and institutional websites.
- Convenience sampling was used.

Section I	Section II
Demographics	Course Choices
Section III Motivations for Choosing Chemistry	Section IV Career Choices

Mapping Student Participants 2020-22

- Population determined according to Undergraduate prospectus
- 26 courses specified Chemistry as an entry option and/or requirement.
- A total of 667 students were identified with IM / AM level Chemistry qualifications according to 2020-22 enrolment figures.



International Conference 234 1:13 7 a L in SCIEN 5 GAT 1 2 E 1

AN IS

Results

tenner hand

100

International Conference in SCIE H E =

Table 1. Student Participants

Course		Year of Study		
		2 nd Year	3 rd Year	Total
B.Sc. (Hons) Information Technology (Computing and Business)			1	1
B.Sc. (Hons) Applied Biomedical Science	4	1	1	6
B.Sc. (Hons) Applied Food and Nutritional Sciences			1	1
B.Sc. (Hons) Biology	2	2	1	5
B.Sc. (Hons) Chemistry	1	4	3	8
B.Sc. (Hons) Medical Biochemistry		1	1	2
B.Sc. (Hons) Pharmaceutical Science	1	3	3	7
B.Sc. (Hons) Pharmaceutical Technology	2			2
B.Sc. (Hons) Pharmacology	1	1		2
B.Sc. (Hons) Podiatry	1		1	2
Doctor of Medicine and Surgery		15	13	37
Master of Dental Surgery	2	3	1	6
Total	24	30	25	79
Percentage	30.4%	38.0%	31.6%	100%

TEBOORT

-481

7 Themes which emerged from the questionnaire using thematic analysis

HITEBOORTEN H

Results - UM Students

- Students' frequent motivations for choosing chemistry were *"family"* followed by *"teachers and mentors"*
- "The attitude and teaching methods of my teacher at sixth form were pivotal to developing a positive attitude to a subject" (S23).
- "I always enjoyed the subject, but terrible teachers made the subject more challenging than it had to be" (S44)

Results - UM Students

- 92.4% of participants (73 of 79) stated that IM and AM level Chemistry expanded their career choices.
- "Most successful chose a completely different higher paying career path entirely" (S2).
- 44.5% of students (35 respondents) expressed willingness to consider a Chemistry-related career abroad, emphasising the perceived global value of the subject.

Results – Sixth Form Chemistry Teachers

- Teachers believed that student choices are influenced by:
 - university requirements
 - future career aspirations
 - prestige
 - societal influences
 - job opportunities
 - family background (in accordance with Vocational Types Theory VTT)
 - personal interests
 - peer influence

Results – Sixth Form Chemistry Teachers

- According to teachers, chemistry is perceived as difficult when compared to other subjects.
- There is lack of information about job trends "I feel nobody tells us anything and we are very much out of the loop except from what we hear from ex-students" (T2).
- Teachers highlight the lack of information about job trends and need for enhanced promotion of careers in Chemistry.
- Teachers expressed concerns about restricted career opportunities and advocated for promotion of chemistry careers.

Results – Course Coordinators

- Influences on student choices according to coordinators were personal goals, job availability, salaries, personal preferences (in accordance with Rational Choice Theory RCT), and academic performance.
- Coordinators emphasised factors influencing student course choices aligned with the SCCT Model, addressing misconceptions about Chemistry, and highlighting its impact on interdisciplinary connections.
- "Students with a chemistry background acquire analytical skills, data management abilities, research proficiency, logical thinking and problem-solving skills" (C4).

Results – Course Coordinators

- Chemistry is viewed as contributing to interdisciplinary connections in curricula.
- Importance of aligning Chemistry as an entry requirement with industry standards and proposed syllabi changes to include diverse real-world applications. "We are close to industry, and I regularly discuss the curriculum with industry exponents" (C6)

Summary of Results

	Themes	University Students	Sixth Form Chemistry teachers	University of Malta Course Coordinators
1	Influence	 Family members Teachers and mentors Educational institutions Career aspirations Interest in the subject 	- University requirements - Future career aspirations - Prestige and societal influence - Job opportunities and satisfaction - Family background and personal interests - Peer influence	 Personal goals Job availability Potential earnings Personal preferences Academic performance
2	Misconceptions	Perceived to be difficult Limited understanding of its applications Limited career opportunities Perception as a textbook science	Perceived to be difficult Memorisation-based learning approach Chemistry as a difficult subject compared to biology Limited career opportunities	 Perceived to be difficult Limited understanding of its applications Limited career opportunities Perception as a textbook science
3	Motivation	- Career aspirations - Interest in the subject - Future qualifications	- Career aspirations - Interest in the subject - Prerequisites for other programmes	- Career aspirations - Interest in the subject - Future qualifications
4	Perceptions	 Positive perception Concerns about domestic vs. international opportunities 	 Limited job market trends and opportunities in Malta limiting career prospects (emphasis on medicine) 	 Need for diverse career prospects in Chemistry Limited advertising
5	Career Aspirations	- Broad options in career choices - Positive impact on future career prospects	 Varied opinions awareness of the relevance of chemistry in real- world applications 	 Importance of lecturers and teachers in emphasising the subject's relevance
6	Acquired skills	- Career aspirations in Chemistry- related fields	 Academic skills in chemistry Analytical skills Problem-solving skills 	 Analytical skills Critical thinking abilities Practical laboratory skills
7	Promoting Chemistry	 Hands-on activities Visual aids and analogies Laboratory sessions Discussions 	 Hands-on activities and visual aids Applying Chemistry to everyday life Using humour Incorporating questioning techniques and laboratory sessions Importance of modernising the curriculum 	 Promoting interdisciplinary knowledge Complementary to other science subjects Ensuring a solid foundation for further education

The set of the set of

Analysis and Discussion

Convergent Perspectives

- Career aspirations identified as a crucial factor in course choices, echoed by UM students and Sixth Form Chemistry teachers.
- Emphasis on aligning educational options and offers with students' career paths emphasised the pivotal role of addressing aspects in course design.
- Both teachers and course coordinators emphasise the integration of real-world applications of Chemistry, focusing on practical examples, context-based approaches, and job opportunities.

Divergent Perspectives

- Students cited family influence as their main reason for choosing chemistry. Teachers indicated a number of factors such as university requirements, prestige and personal interest.
- UM students identified a lack of promotion of the subject. Sixth form chemistry teachers expressed mixed opinions.

Limitations

- 1. A large sample size could have provided a more comprehensive explanation of students' views and experiences with IM / AM chemistry qualifications.
- 2. A more representative sample of course coordinators would have been representative.

Conclusions

- There are a number of intricate factors that influence students' decisions of course selection.
- A different approach can be adopted to support students' course choices.
- Students perceive Chemistry as a valuable qualification for career opportunities.
- Chemistry education can be enhanced by dispelling misconceptions, aligning courses with career aspirations, and integrating real-world applications.

Recommendations

- Include real-world applications into the curriculum using practical examples.
- Make Chemistry more relevant to students' daily lives, enhancing their engagement and success in related courses.
- Incorporate research insights into future curriculum design, teaching methods, and support systems to proactively boost student engagement, interest, and achievement in tertiary Chemistry courses.

- Seek feedback from employers and chemistry professionals to align academic programmes with industry requirements.
- Propose a cross-cultural comparison on Chemistry choices to tailor educational approaches to diverse student populations and foster inclusivity.

BAARTER

References

[1] Regan, E., & DeWitt, J. (2014). Attitudes, interest and factors influencing STEM enrolment behaviour: An overview of relevant literature. In Understanding student participation and choice in science and technology education, pp. 63-88.

[2] Thake, E. (2023). Courses Requiring Intermediate / Advanced Level Chemistry at the University of Malta: An Analysis of Students' Choices (unpublished Master dissertation).

[3] Magro, M., & Musumeci, M. (2019). Trends and patterns in subject choice by science students at sixth form level in Malta. In Conference Proceedings: New Perspectives in Science Education 8th Edition.

[4] Musumeci, M. (2015). Subject Choice and Performance in Chemistry and the Science Subjects in Malta: Patterns According to Gender and School Type. In Conference Proceedings International Conference New Perspectives in Science Education 4th Edition.

[5] Southerland, S. A., Johnston, A., & Sowell, S. (2006). Describing teachers' conceptual ecologies for the nature of science. Science Education, 90(5), 874-906.

[6] Chen, X. (2013). STEM Attrition: College Students' Paths Into and Out of STEM Fields (NCES 2014-001). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

[7] Herfeld, C. (2018). From theories of human behavior to rules of rational choice: tracing a normative turn at the Cowles Commission, 1943–54. History of Political Economy, 50(1), 1-48.

[8] Wittek, R., Snijders, T. A., & Nee, V. (Eds.). (2013). The handbook of rational choice social research. Stanford University Press.

[9] Holland, J.L., Daiger, D.C., Power, P.G. (1980) My Vocational Situation. Palo Alto, CA, Consulting Psychologists Press.

[10] Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of vocational behavior, 45(1), 79-122.

[11] Adebusuyi, A. S., Adebusuyi, O. F., & Kolade, O. (2022). Development and validation of sources of entrepreneurial self-efficacy and outcome expectations: A social cognitive career theory perspective. The International Journal of Management Education, 20(2), 100572.

[12] Garriott, P. O., Hudyma, A., Keene, C., & Santiago, D. (2015). Social cognitive predictors of first-and non-first-generation college students' academic and life satisfaction. Journal of Counselling Psychology, 62(2), 253.

[13] Gibbons, M. M., & Borders, L. D. (2010). Prospective first-generation college students: A social-cognitive perspective. The Career Development Quarterly, 58(3), 194-208.

[14] Malta Union of Teachers – A Short Overview of the Education System in Malta. Retrieved January 20, 2024, from https://mut.org.mt/information/education-system-overview/

[15] University of Malta – Admissions and advice – Admissions FAQs – Entry Requirements. Which subjects do I need in order to satisfy the University's General Requirements? Retrieved January 20, 2024, from https://www.um.edu.mt/study/admissionsadvice/admissionsfaqs/

[16] University of Malta, Undergraduate Prospectus 2022 & 2023. Retrieved January 20, 2024, from https://www.um.edu.mt/media/um/docs/study/admissions/UG_Prospectus.pdf

[17] Creswell, J. W., & Clark, V. L. P. (2018). Designing and conducting mixed methods research. Sage Publications.

[18] Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.

Thank You

edward.thake@ilearn.edu.mt

martin.m.musumeci@um.edu.mt

and the state of the local division of the l

International Conference 256 2 5 in SCIEN 5 UGAT = 1 E

Questions?