A QUALITATIVE EVALUATION ON USABILITY OF EDUCATIONAL SIMULATIONS

Nesrin Özdener Dönmez, PhD Assoc. Prof. at Marmara University Ataturk Education Faculty Turkey Zeynep Gökkaya Lecturer & Coordinator at Marmara University Distance Education Center Turkey The expediency of instructional design is important considering the variety of teaching materials. When viewed from this aspect, making correct instructional design is a necessity to deliver the desired outcomes of the simulations [2]. Instructional design of the training materials and evaluating expediency have been made by educational technologists. One of the important points is analyzing the sufficiency of the education process.

To increase teachability and effectiveness of simulations through usability

Purpose

To examine the usability of simulations in an educational portal that is supported by Ministry of National Education and is extensively used by many teachers and students in Turkey.

To determine sufficiency in evaluating simulations' usability of educational technologist candidates as CEIT students having taken CBI courses in their bachelor are expected to evaluate training materials professionally.

In this study, the following questions have been answered:

- Are the instructions of simulations sufficient to usability?
- What are the views of participants about the opportunities to control and manipulate the simulations?
- Do the simulation assessment of the educational technologist candidates have a consistency each other?
- What are the determining impediments when using simulations?

Methodology

Subtopics of usability criteria

Print out

Table 1. Simulation evaluation criteria

No	Evaluating criteria	Yes		Partially		No	
		%	f	%	f	%	f
1	Works performed in simulation may be taken back or forward [18] control is left to the user.	5.9	2	35.3	12	58.8	20
2	It offers taking note opportunity.	0	0	17.6	6	82.4	28
3	There is a communication platform.	0	0	100	34	0	0
4	There is an accessible help function.	91.2	31	0	0	8.8	3
5	Simulation gives the ability to cancel during the study.	100	34	0	0	0	0
6	It is possible to use the entire screen during simulation.	100	34	0	0	0	0
7	The simulation is embedded in the platform [17].	100	34	0	0	0	0
8	The animations are used to support understandability of instructions.	61.8	21	20.6	7	17.6	6
9	The experiment results obtained can be examined and users can continue from the rest part.	11.8	4	26.5	9	61.8	21
10	The obtained data can be print out.	14.7	5	0	0	85.3	29
11	The points that user wants to see are supported by focusing or swelling method at the end of obtained simulation results.	17.6	6	38.2	13	44.1	15
12	Error messages are intended to reduce problems [18]	67.6	23	14.7	5	17.6	6
13	Oral and written instructions are used.	76.5	26	23.5	8	0	0
14	The snap ability is used to place the objects easily and correctly [10].	23.5	8	11.8	4	64.7	22

Table 2. Points of simulations according to usability criteria

No	Simulation Name	Average of Participant Evaluations (x)			
1	Converting units	13,0			
2	Converting given units to international units	17,0			
3	Measuring mass, volume and length	17,2			
4	Effects of floor area and height of squre perpendicular prism on volume	11,6			
5	Effects of floor area and height of rectengular pyramid on volume	16,9			
6	Calculating density	19,5			
7	Discovering the relationship between surface and volume	21			
8	Location, times and speed graphs	17,4			
9	Drawing location-time and speed-time graph of the uniform linear movement	18,0			
10	Drawing location-time graph with using speed-time graph of the uniform linear movement	17,2			
11	Drawing constant acceleration motion graph	13,8			
12	Examining the graph of movement with creating different types of motion with constant acceleration	15,0			
13	Friction force	14,6			
14	Factors affecting the static friction	21,3			
15	Discovering the effects of balanced force on to the movement of objects	18,0			
16	The resultant vector calculation with decompose	7,0			
17	The resultant force calculation with decompose	10,0			
18	Applying the thought experiment of Galileo	22,0			
19	Examining the movement of the force applied on objects	23,0			
20	Discovering the effects of objects movements of unbalanced forces	16,7			
21	Discovering the effects of objects movements of balanced and unbalanced forces	17,7			
22	Discovering action and reaction	14,0			
23	Gripping Newton's third law of motion	16,7			
24	Mechanical energy conservation and calculation	12,4			
25	Discovering conservation of mechanical energy on friction surface	13,0			
26	Discovering the types of renewable energy	19,1			
27	Discovering the types of nonrenewable energy	16,0			
28	Showing the relationship between the amount of material and boiling time on heat	19,0			
Average 16					

Fleiss Kappa parameter is calculated through these evaluation results (κ =0, 21).

The consistency of education technologist candidates has determined lower than expected.

Figure 1. Participants' reviews and screenshots for the ending simulations and instructions

(b)

(a)

11/20

(C)

Figure 2. Participants review and screenshot for user control

KG1: Any of us could not enter the rocket. When we thought that we entered inside, it threw us to the outside. Students do not strive with this KG3: It didn't work, I tried 3 times. The astronaut have not gone to the correct side	KG1: When I chose the surface, the substance changed. It is incoherent KG3: What I do, just the wooden surface changed. KG5: I couldn't change the mass and surface	KG2: you have 3 trial rights and error that is insufficient to new learners. If the learner can manipulate the values between distances, it would be more beneficial. KG8: In my opinion, users should enter the values
(a)	(b)	(C)

Determined impediments via content analysis

RESULTS AND SUGGESTIONS

14/20

All of the educational softwares should be checked by education technologist experts according to clearty. Also, prototypes of the softwares should be used by target sample.

The expression of instructions used in the software is not clear enough and what students will do at the end of the simulation is not clear enough too.

According to finding, the consistency has been determined lower than expected between participants (K=0, 21).

Thanks for your attention...

Lecturer Zeynep Gökkaya

• PhD student at Marmara University – Computer and Instructional Technologies in Education

• Coordinator at Marmara University Distance Education Center

Contact Info:

- E-mail: <u>zeynep.gokkaya@marmara.edu.tr</u>
- Phone: +90 216 345 07 64 /135

References

Bannetain, E., Boucheix, J.-M., Hamet, M., & Freysz, M. (2010). Benefits of computer screen-based simulation inlearning cardiac arrest procedures. Medical Education, 44, 716-722.
Cook, D. A., Hamstra, S. J., Brydges, R., Zendejas, B., Szostek, J. H., Wang, A. T., & Erwin, P. J. (2013). Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. Medical Teacher, 867-898.

[3] Dawley, L., & Dede, C. (2014). Situated learning in virtual worlds and immersive simulations. J. M.

[4] Demirer, V., Özdinç, F., & Şahin, İ. (2009). Self sufficiency perceptions of computer teacher candidate, 9th International Educational Technology Conference (pp.435-441). Ankara: Hacettepe University.

[5] Feinstein, A. H., & Cannon, H. M. (2001). Fidelity, verifiability, and validity of simulation: Constructs for Evaluation. Developments in Business Simulation and Experiential Learning, 28, 57-67.

[6] Feinstein, A. H., Mann, S., & Corsun, D. L. (2002). Charting the experiential territory. Journal of Management, 21, 732 - 744.

[7] Gökkaya, Z. (2014). A new approach in adult education: Gamification, Journal of Hasan Ali Yücel Education Faculty, 11(1), 71-84.

[8] Gündüz, M., Baykan, Ö. K., & Yıldız, F. (2007). Virtual lab application for electronic experiments. Selçuk University Teknik-Online Journal, 6(2), 61-74.

[9] Hurtado, N., Ruiz, M., Orta, E., & Torres, J. (2015). Using simulation to aid decision making in managing the usability evaluation process. Information and Software Technology, 209-526.

[10]Karagöz, Ö. (2006) Examining the impact on student achievement with using different instructional methods and evaluating the design and usability of different virtual laboratory programs in Physics courses, Unpublished master thesis, Marmara University.

[11] Karagöz, Ö., & Özdener, N. (2010). Evaluation of the usability of different virtual lab software used in physics courses. Bulgarial Journal of Science and Education Policy, 4(2), 216-235.

[12] Korkmaz, Ö. Usta, E. & Güzeller, C. (2009), Evaluation sufficiency of teacher candidates for choosing correct educational software, Journal of Ahi Evran University Educational Faculity, 10(3), 135-142

[13] Lepper, M.R. & Chabay, R.W. (1985) Intrinsic motivation and instruction: Conflicting views on the role of motivational process in computer-based education, Educational Psychologist, 217-230.

[14] Özdener, N. (2005). Using simulation in experimental teaching methods. The Turkish Online Journal of Education Technology, 93-98.

[15] Pavoordt, P. (2012). Gamification of education. Retrieved December 15, 2014, from http://www.cs.vu.nl/~eliens/sg/local/essay/12/17.pdf

[16] Salas, E., Wildman, J. L., & Piccolo, R. F. (2009). Using Simulation-Based training to enhance management education. Learning & Education, 8(4), 559-573.

[17] Sitzmann. (2011). A meta-analytic examination of the instructional effectiveness of computer-based simulation games. Personnel Psychology, 489-528.

[18] Squires, D. & Preece, J (1999). Predicting quality in educational software: Evaluating for learning, usability and the synergy between them, Interacting with Computers, 467-483.

[19] Türeli, S. (2013, May 23). Vitamin and vitamin teacher portal. Retrieved December 15, 2014, from

http://usak.meb.gov.tr/:http://usak.meb.gov.tr/meb_iys_dosyalar/2013_06/04041538_vitaminvevitaminretmenportal.pdf