

FEHA: an Adaptive Web-Based Front-End Environment to Support
Hands-On Training in Parallel Programming

Syunji Yazaki1, Takeshi Kikuchi2, Hideaki Tsuchiya3, Hiroaki Ishihata4

Abstract
In this paper, we propose an adaptive web-based programming environment called Front-end Envi-
ronment for Hands-on Activities (FEHA) for parallel-processing lectures. We designed FEHA to utilize
the remaining system resources of existing clusters for education. To meet this objective, we em-
ployed an agentless design that does not use cluster-side agent program to control the cluster. FEHA
uses only two common UNIX commands: “ssh” and “rsync”. Because of this specification FEHA can
adaptively utilize computation resources of any cluster systems. We used FEHA in two lectures at a
university. Students learned fundamental parallel-programming methodologies in the lectures. In the
first lecture, 108 students submitted 1,658 programs through FEHA while 116 students submitted
1,648 programs in the second lecture. We also conducted a questionnaire survey to evaluate the usa-
bility of FEHA by using a web usability scale. The results showed that most students have a positive
impression for the FEHA design including the web user interface. In particular, the students evaluated
the operational stability of FEHA and reported that FEHA is easy to use. From the results, we con-
firmed that FEHA contributes to making parallel programming lectures more effective and easy to
learn.

1. Introduction
Parallel processing technology has become essential in computer science. Many applications and
cloud service infrastructures have been parallelized to achieve better performance and quality of ser-
vice. Thus, training and education for parallel processing technology are required in the information
technology industry. However, preparing a parallel programming lecture is a challenge because such
a programming environment usually requires a computer cluster with sufficient compute nodes, net-
work, and software. Some academic organizations own cluster systems for research projects. Howev-
er, utilizing these systems for lectures is difficult because the systems lack a user-friendly interface for
learners.
Programming environments for parallel programming beginners have been developed [1]. These sys-
tems provide a user-friendly integrated development environment (IDE) for the learners. Some sys-
tems also have features that collect learning activities and summarize them to provide appropriate
feedback to the learners [2]–[4].
One concern regarding systems is the cost of maintenance. The instructors have to ensure both the
parallel programming platform (back end) and user interface application (front end) to conduct the lec-
tures. In particular, a parallel programming environment requires higher hardware and software costs
compared to a nonparallel programing environment.
With this background, we developed an adaptive web-based front-end environment for parallel pro-
gramming training called Front-end Environment for Hands-on Activities (FEHA). FEHA provides a us-
er-friendly programming interface for lectures. It is designed to utilize the existing parallel program-
ming environment without any modifications in the environment. In this paper, we will describe the out-
line of FEHA. We will also report a case of application of FEHA in a parallel programming class at a
university.

2. Related work
Some systems that support programming lectures have been developed. Moodle [5] are typical learn-
ing management systems (LMSs) that are widely used in education. Virtual programming lab (VPL) [1]
is a web-based programming environment that is implemented as a Moodle plug-in. The VPL has a
feature called “Jail” that enables a closed environment to run programs coded by the learners safely. It
also provides a web-based integrated development environment (web IDE).

1
 The University of Electro-Communications, Japan

2
 Tokyo University of Technology, Japan

3
 The University of Electro-Communications, Japan

4
 Tokyo University of Technology, Japan

Fig. 1. Construction of FEHA.

A few web-based tutoring systems such as Codecademy exist [2]. They are designed for learning typi-
cal coding techniques through a step-by-step tutorial. Thus, preventing the learners from writing arbi-
trary codes.
Paolo et al. developed an incremental hint system for programming exercises [6]. The hint system dis-
plays a series of hints according to the requests from a student. The hints are created in advance
based on example source codes.

3. Implementation

 Construction and design principle 3.1.
Fig. 1 shows the construction of FEHA. It provides a web IDE especially for parallel programming lectures.
The students write their codes in the web IDE. FEHA compiles the codes and runs them on a UNIX-
based cluster system (back end). Execution results are stored in the database on FEHA.
As introduced in Section 2, some web-based programming environments have already been pro-
posed. The main difference between FEHA and existing programming environments is that FEHA only
works as a web user interface for existing UNIX-based parallel computing clusters. In contrast, exist-
ing systems implement their own program execution environment. The motivation for the FEHA is to
utilize the remaining system resources of existing clusters for education. Some academic organiza-
tions or research groups have their own cluster systems. However, computational resource of a sys-
tem is not fully utilized in many cases.
For ease of setup and maintenance, we employed MongoDB, Express, AngularJS, and Node.js
(MEAN) stack for implementation of FEHA. MEAN recorded a relatively high performance to recent
web application frameworks [7]. We can deploy and maintain FEHA efficiently, and can run it even on
small server machines using the MEAN stack.
One important principle of the FEHA implementation is that it is agentless. FEHA should work for
many types of cluster. Most of them restrict installation of the software and use of TCP/UDP ports.
Thus the use of a cluster-side agent program, such as UNIX daemon, should be avoided. To satisfy
this requirement, we only use two common UNIX commands, “ssh” and “rsync,” to drive the cluster
from FEHA. The commands “ssh” and “rsync” are used to run submitted programs on the cluster and
for incremental file syncing between FEHA and the cluster, respectively.
From the point of view of security, the back end may be damaged by unexpected behavior of the
submitted program. To avoid this, FEHA builds a shell script, which wraps the submitted program. In
the shell script, any runtime restriction performed with the “limit” or “ulimit” UNIX commands can be set
for each program exaction. FEHA enables this runtime restriction according to the FEHA administrator
settings.

Fig. 2. Web IDE screen of FEHA.

 Programming environment 3.2.
Fig. 2 shows a section of the web IDE screen. It consists of an execution option form, buttons for
samples and templates, and an editor form. Users can select the options to run multi-thread (Pthread
and OpenMP) and message passing interface (MPI) programs, if the corresponding back end support
exists. Sample codes and code templates are provided to support the training. The editor form is im-
plemented using JavaScript, which works on all major web browsers. Further, the user can select one
of the MPI libraries, such as MPICH or MVAPICH, which are setup at the back end.
In order to support the lectures, the web IDE screen has buttons that load sample codes or code tem-
plates. The difference between the sample codes and code templates is that the samples are codes
that are ready to run without modification, whereas the templates are pieces of code that must be modi-
fied. A user can load and run the samples to understand the usage of the web IDE. Then, the instructor
can utilize the templates to teach the technology.
FEHA has a hint function that shows two types of information as hints to the students: precautions and
solutions. Programming beginners frequently make errors. Most of these errors, such as general com-
pilation errors, are not related to learning of the technology. This function helps both students and in-
structor by reducing these general errors.
The precautions are tips to avoid minor problems. Numerous types of errors occur during the pro-
gramming. However, based on our preliminary research, five types of error constitute 96% of the total
number of errors that occur during a programming class. Hence, FEHA displays these precautions to
the student.
The solution is to provide information to avoid general errors. We collect and analyze compilation er-
rors from a lecture that has been conducted earlier. Then, we create a database that contains a list of
compilation errors and the corresponding solutions. If the user makes a compilation error, FEHA dis-
plays the corresponding solutions in the IDE.

4. Evaluation

 Experimental overview 4.1.
We used FEHA in two lectures at a university. The students learned fundamental parallel program-
ming methodologies in the lectures. We taught Pthread and OpenMP in the first and second lecture,
respectively. Pthread is an implementation of the POSIX thread library. It is a fundamental library for
carrying out shared-memory multi-processing on a UNIX system. OpenMP is an application program-
ing interface for using shared-memory multi-processing easily.

In the first and second lectures, 108 and 116 students used FEHA, respectively. The students in both
lectures were in the same class. There were a total of 1,658 and 1,648 submissions during the first
and second lectures, respectively.
We used a desktop PC (AMD Athlon II X2 220 processor, 1.7 GB DDR3 memory, 1 GigE network) to run
FEHA. As the back end, we used our own computer cluster that was already in use for another research
project. During the lectures, we did not observe any significant delay in request processing.
We also conducted a questionnaire survey to evaluate the usability of FEHA according to a web usa-
bility scale (WUS). The WUS evaluates the usability of web site using seven factors: favorability, use-
fulness, reliability, layout, operability, visibility, and responsibility. It consists of 21 questions. Each fac-
tor is evaluated from three questions. The subjects rate each question on a scale of 1 (poor) to 5
(good). We took averages of scores for each factor. We also asked additional questions for further
analysis.

 WUS questionnaire result 4.2.
A total of 66 and 51 students answered the WUS questionnaires in the first and second lectures, re-
spectively. Table 1 shows a summary of the WUS average scores.
As shown in the table, FEHA achieved greater than three points for all factors. This means that most
students have a positive impression of the FEHA design, including the web user interface. In particu-
lar, the factors “Reliability” and “Operability” achieved higher grades than the other factors. This indi-
cates that the students rated the operational stability of FEHA and felt that FEHA is easy to use.
From the results, we confirmed that FEHA contributes to making parallel programming lectures more
effective and easy to learn.

5. Conclusion
In this paper, we propose an adaptive web-based programming environment called the FEHA for par-
allel processing lectures. Parallel processing technology has become essential in computer science.
However, preparing parallel programming lectures is a challenge because such a programming envi-
ronment usually requires several expensive hardware and software components. To tackle this prob-
lem, we designed FEHA to utilize the remaining system resources of existing clusters for education.
FEHA provides a web IDE for programming lectures. The IDE includes an editor, buttons for selecting
options for parallel computing, code snippets, and a hint window for programming beginners.
One important design principle of FEHA implementation is that it is agentless. FEHA works for several
different types of clusters. Most of these restrict the installation of software and use of TCP/UDP ports.
Thus, FEHA only uses two common UNIX commands, “ssh” and “rsync,” to drive the cluster.
We used FEHA in two lectures at a university. The students learned fundamental parallel program-
ming methodologies in the lectures. In the first lecture, 108 students submitted 1,658 programs
through FEFA, while 116 students submitted 1,648 programs in the second lecture.
We also conducted a questionnaire survey to evaluate the usability of FEHA using WUS. The results
showed that most students have a positive impression for the FEHA design, including the web user in-
terface. In particular, the students evaluated the operational stability of FEHA and felt that FEHA is
easy to use. From the results, we confirmed that FEHA contributes to making parallel programming
lectures more effective and easy to learn.

Acknowledgements
A part of this study was supported by KAKENHI grants (26330143 and 25330146).

Table 1. Summary of WUS average scores for FEHA in two lectures.

 Favorability Usefulness Reliability Layout Operability Visibility Responsibility

1st lecture 3.1 3.1 3.3 3.2 3.4 3.1 3.1

2nd

lecture 3.3 3.2 3.5 3.3 3.4 3.4 3.1

References
[1] J. C. Rodríguez-del-Pino, “VPL, Viertual Programming lab for Moodle.” [Online]. Available:

http://vpl.dis.ulpgc.es/. [Accessed: 14-Apr-2016].
[2] T. Wang, X. Su, P. Ma, Y. Wang, and K. Wang, “Ability-training-oriented Automated Assessment in

Introductory Programming Course,” Comput. Educ., vol. 56, no. 1, pp. 220–226, 2011.

[3] H. Hiroaki, M. Kazuki., T. Kakafumi, H. Atsuo, and K. Seiichi., “An Environment for Collecting Fine-
Grained Development Records to Help with Programming Exercise,” in Advanced Applied
Informatics (IIAIAAI), 2014 IIAI 3rd International Conference on, 2014, pp. 739–744.

[4] E. L. Glassman, J. Scott, R. Singh, P. Guo, and R. Miller, “OverCode: Visualizing Variation in
Student Solutions to Programming Problems at Scale,” in Proceedings of the Adjunct Publication of
the 27th Annual ACM Symposium on User Interface Software and Technology, 2014, pp. 129–130.

[5] MoodleHQ, “Moodle.” [Online]. Available: https://moodle.org/. [Accessed: 14-Apr-2016].
[6] P. Antonucci, C. Estler, D. Nikolić, M. Piccioni, and B. Meyer, “An Incremental Hint System For

Automated Programming Assignments,” in Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Education, 2015, pp. 320–325.

[7] TechEmpower, “Web Framework Benchmarks, Round 9.” .

