THE MISCONCEPTIONS IN MECHANICS AMONG STUDENTS AFTER COMPLETING THEIR SECONDARY LEVEL EDUCATION IN MALTA

Carmel Azzopardi
G.F Abela Junior College,

University of Malta
Carmel.g.ažopardi@um.edu.mt

- Introduction

Research questions
Methodology
Results
Conclusions

Introduction

- 1976 - David Hestenes about his children.
- Richard Stoner - quantitative problem-solving techniques versus qualitative arguments.
- Robert Karplus - 'exploration, invention and discovery'.
- David Hestenes - sensory input, short-term and longterm memories.
- Ibrahim Halloun - preconceptions and the development of the force concept inventory.
- Students form opinions to explain everyday phenomena based on learning and experience.

Research questions

- Are misconceptions in mechanics related to the gender of the participants?
- Do repeaters have fewer misconceptions in mechanics than newly-admitted participants?
- Do high grades in SEC (ordinary level) Physics, Maths and English play a role in misconceptions in mechanics?

Education system in Malta
3-5 yrs $\quad 5-10$ yrs $\quad 10-16$ yrs $\quad 16-18$ yrs

2	6	5
- Kindergarten		2

- Primary education
- Secondary education
- Post-secondary education

Methodology

- The force concept inventory (named as mechanics survey) originally published in 1992 by David Hestenes, Malcolm Wells, \& Gregg Swackhamer and then revised in 1995 by Ibrahim Halloun, Richard Hake and Eugene Mosca.
- Mechanics survey consisted of 30 questions (FCI) and 2 other questions about motion graphs.
- The survey was given to all students in the physics department taking physics at advanced or intermediate level.
- Administered by colleagues teaching mechanics on the second week of commencing courses. This happened between $6^{\text {th }}$ and $9^{\text {th }}$ October 2015.
- SPSS 2.1 was used for the analysis.

Response

Results - Test of Normality at the 0.05 level

Tests of Normality (1-30)						
	Kolmogorov-Smirnov			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
All data	. 130	475	. 000	. 964	475	. 000
Intermediate level	. 135	277	. 000	. 970	277	. 000
Advanced level	. 122	198	. 000	. 956	198	. 000
Tests of Normality (31 and 32)						
	Kolmogorov-Smirnov			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
All data	. 410	475	. 000	. 650	475	. 000
Intermediate level	. 395	277	. 000	. 669	277	. 000
Advanced level	. 431	198	. 000	. 616	198	. 000

Results

- Distribution of percentage scores is not normal in all cases.
- Non-parametric tests.
- Kruskall-Wallis for k-independent samples to compare means.
- One-way ANOVA for statistics information.

The first 30 questions (FCl)

Gender

Results - Gender

Q1-30							
Group	Max mean		Min mean		Difference	significant	P-value (0.05)
All	29.75	Male	22.75	Female	7.00	YES	0.000
Intermediate	27.73	Male	22.48	Female	5.25	YES	0.000
Advanced	31.49	Male	23.52	Female	7.97	YES	0.000
Q31-32							
Group	Max mean		Min mean		Difference	significant	P-value (o.05)
All	80.56	Male	80.24	Female	0.32	NO	0.573
Intermediate	80.40	Male	78.29	Female	2.11	NO	0.356
Advanced	85.85	Female	80.69	Male	5.16	NO	0.331

Repeating

Results - Repeating

Q1-30							
Group	Max mean		Min mean		Difference	significant	P-value (0.05)
All	32.43	R	26.19	NR	6.24	YES	0.001
Intermediate	29.22	R	24.56	NR	4.66	NO	0.307
Advanced	34.72	R	28.62	NR	6.09	YES	0.004
Q31-32							
Group	Max mean		Min mean		Difference	significant	P-value (0.05)
All	84.14	R	80.07	NR	4.07	NO	0.261
Intermediate	79.62	NR	73.53	R	6.09	NO	0.546
Advanced	91.67	R	80.75	NR	10.92	NO	0.063

SEC level physics

Results - SEC level Physics

Q1-30							
Group	Max mean		Min mean		Difference	significant	$\begin{gathered} \text { P-value } \\ (0.05) \end{gathered}$
All	32.80	Grade 1	23.72	Grade 5	9.08	YES	0.000
Intermediate	29.78	Grade 1	22.16	Grade 5	7.62	YES	0.005
Advanced	37.33	Grade 1	26.13	Grade 4	11.20	YES	0.017
Q31-32							
Group	Max mean		Min mean		Difference	significant	$\begin{gathered} \text { P-value } \\ (0.05) \end{gathered}$
All	87.39	Grade 2	67.31	Grade 5	20.08	YES	0.007
Intermediate	89.06	Grade 2	67.65	Grade 5	21.41	YES	0.002
Advanced	85.29	Grade 2	66.67	Grade 5	18.62	NO	0.827

SEC level Maths

Results - SEC level Maths

Q1-30							
Group	Max mean		Min mean		Difference	significant	P -value (0.05)
All	30.17	Grade 1	23.14	Grade 5	7.03	YES	0.000
Intermediate	27.00	Grade 1	22.67	Grade 5	4.33	NO	0.202
Advanced	33.33	Grade 1	24.30	Grade 5	9.03	YES	0.020
Q31-32							
Group	Max mean		Min mean		Difference	significant	P -value (0.05)
All	91.25	Grade 1	74.06	Grade 5	17.19	YES	0.001
Intermediate	95.00	Grade 1	73.33	Grade 5	21.67	YES	0.004
Advanced	87.50	Grade 1, 2	75.81	Grade 5	11.69	NO	0.436

SEC level English

Results - SEC level English

Q1 - 30							
Group	Max mean		Min mean		Difference	significant	P-value (0.05)
All	28.88	Grade 2	25.94	Grade 3	3.53	NO	0.222
Intermediate	28.95	Grade 1	23.84	Grade 5	5.11	marginal	0.053
Advanced	32.98	Grade 2	26.00	Grade 1	6.98	NO	0.124
Q31-32							
Group	Max mean		Min mean		Difference	significant	P-value (0.05)
All	87.50	Grade 2	77.40	Grade 3	10.10	NO	0.095
Intermediate	85.19	Grade 2	77.11	Grade 3	8.08	NO	0.543
Advanced	90.79	Grade 2	77.36	Grade 4	13.43	NO	0.133

Conclusions - Q1-30 (FCl)

- Male participants have less misconceptions than female participants.
- Repeating participants have less misconceptions than newly-admitted ones in general but is insignificant for intermediate level participants.

Conclusions - Q1-30 (FCI)

- A good grade in SEC physics helps in having less misconceptions.
- A good grade in SEC Maths helps in having less misconceptions but is insignificant for intermediate level participants.
- A good grade in SEC English makes no difference to the misconceptions.

Conclusions - Q31 \& 32

- In general for these questions about linear motion graphs, the average percentage score did not make a significant difference.
- Intermediate level participants showed less misconceptions with a good grade in SEC Physics and SEC Maths grade.

Acknowledgements

- Prof. Liberato Camilleri , statistics and operations research.
- Dr. Charles Bonello, Mathematics and science education.
- Mr. Paul Xuereb, Principal of Junior College.
- Mr. Russell Mizzi, the subject coordinator.
- Physics staff participating in administration of the survey.
- Participants in the survey.

Thank you for listening

- Any questions?

