Stories of Active Learning in STEM: Lessons for STEM Education

Anastasia Misseyanni, Christina Marouli, Paraskevi Papadopoulou, Miltiadis Lytras, Maria Teresa Gastardo
Deree - The American College of Greece
Aghia Paraskevi, Athens, Greece

International Conference "The Future of Education",
Florence, June 30-July 1, 2016
Introduction

• Active vs. passive learning

• Active learning:
 – student-centered learning
 – “Students do things and think about what they are doing” (Bonwell and Eison, 1991)
 – Examples
 • Class discussion, question-and-answer
 • Role playing, peer teaching, flipped lessons

from www.case.edu
Introduction

• Challenges of teaching in STEM education
 – Breadth vs. depth
 – Stimulate student engagement
 – Can students develop responsibility as learners?
 – Can they participate in the construction of knowledge?
 – Can they challenge mainstream thinking?
Introduction

• The need for a new approach to learning in the sciences has been emphasized in the last decades.
 – Students seek new knowledge, re-organize it, explain it to others (Huba and Freed, 2000)

• Does active learning help in STEM disciplines?
 – Active learning in STEM was shown to:
 • Increase student performance
 • Improve students’ attitudes

• Active Learning empowers students
 – Students develop responsibility and learn to challenge taken-for-granted knowledge
The aim of this paper is to
- Identify effective teaching strategies that promote active learning in STEM.
- Provide a guide for future studies on active learning in STEM.
Methodology

- Five undergraduate courses in STEM disciplines were selected.
 - three in science, one in math, one in information technology
- Instructor feedback was provided through an open-ended questionnaire; five narratives were produced ("stories")
- Analysis, discussion and conclusions followed.
How the Five Instructors Define Active Learning

<table>
<thead>
<tr>
<th>Course</th>
<th>Definition of Active Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A (Environmental Science)</td>
<td>Learner-centered: learning by experience and by “doing”; various in-class activities</td>
</tr>
<tr>
<td>Case B (Biology)</td>
<td>More focus on developing student understanding and other skills; problem-based, interactive, collaborative and cooperative learning</td>
</tr>
<tr>
<td>Case C (Greening the Campus)</td>
<td>Learner-centered: students are involved in the learning process; instructor acts as mentor and facilitator; experiential and action-based learning</td>
</tr>
<tr>
<td>Case D (Mathematics for Business, Economics and Sciences)</td>
<td>Learner-centered: instructor acts as facilitator to actively engage students throughout the learning process</td>
</tr>
<tr>
<td>Case E (IS for Decision Making)</td>
<td>Engage students in the exploration of knowledge; critical problem solving; personal and team skills development</td>
</tr>
</tbody>
</table>
Stories of Active Learning: Environmental Science (Case A)

<table>
<thead>
<tr>
<th>Case A</th>
<th>Environmental Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Goals for the course</td>
<td>• Transmission of knowledge (achieve scientific literacy); critical evaluation, analysis, application to everyday life; • Develop practical and transferable skills (including teamwork and scientific writing)</td>
</tr>
<tr>
<td>Active Learning Methods used</td>
<td>• Question and answer • Brainstorming and class discussion • In-class debate • Lab and field activities involving team work • Lab reports • Group discussion based on video screening • Pause and in-class summaries • Online technologies (Use of Blackboard for course information and material, instructor feedback, discussion boards, interaction with instructor and class mates, feedback on assignments)</td>
</tr>
</tbody>
</table>
Stories of Active Learning: Biology (Case B)

<table>
<thead>
<tr>
<th>Case B</th>
<th>Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Goals for the course</td>
<td>• Transmission of knowledge (biology from human perspective); critical evaluation, analysis, applications (connections with life and society)</td>
</tr>
<tr>
<td></td>
<td>• Develop practical and transferable skills</td>
</tr>
<tr>
<td></td>
<td>• Stimulate interest using digital and modern pedagogical approaches</td>
</tr>
<tr>
<td>Active Learning Methods used</td>
<td>• Question and answer</td>
</tr>
<tr>
<td></td>
<td>• Class discussion</td>
</tr>
<tr>
<td></td>
<td>• Lab activities involving team work</td>
</tr>
<tr>
<td></td>
<td>• Student companion site of the textbook</td>
</tr>
<tr>
<td></td>
<td>• Online technologies (Use of Blackboard and of the online resources of the textbook for information, material, online quizzes and questions, animations, audio and visual material, virtual labs)</td>
</tr>
</tbody>
</table>
Stories of Active Learning:
Lab Activities

Lab Activities: Environmental Science, Biology
Stories of Active Learning: Field Activities and Visits
Stories of Active Learning: “Greening the Campus” (Case C)

<table>
<thead>
<tr>
<th>Case C</th>
<th>Greening the Campus</th>
</tr>
</thead>
</table>
| **Specific Goals for the course** | • Help students develop **ownership of basic knowledge**; develop **critical thinking** about generally accepted knowledge in a subject matter
• Provide opportunity for **collaboration of faculty with students on campus issues; experiential learning; action research** |
| **Active Learning Methods used** | • Field activities, lab activities and visits
• Group project involving field and lab work, data collection, analysis and final report
• Collaborative learning through group work in field projects, creative projects and interviews; game
• Portfolio with essays and journal entries
• Creative project
• Online technologies (Use of Blackboard for course information and material, instructor feedback, discussion boards including group discussion boards, interaction with instructor and classmates) |
Stories of Active Learning: Experiential Learning and Action Research

Activities from Greening the Campus
Stories of Active Learning

Activities from Greening the Campus
Stories of Active Learning: Mathematics (Case D)

<table>
<thead>
<tr>
<th>Case D</th>
<th>Mathematics</th>
</tr>
</thead>
</table>
| **Specific Goals for the course** | • Understanding of quantitative information; application in and outside their discipline; application to real-life word problems
• opportunities for authentic learning using different active learning methods |
| **Active Learning Methods used** | • Flipped classroom (students watch videos w. lecture and exercises at home)
• Question and answer
• Class discussion
• Mini-lecture with pause
• Problem solving with think-pair-share
• Collaborative learning through in-class team work (think-pair-share)
• Instructor feedback on assignments
• Online technologies (Blackboard with access to course information and material; survey tool of Blackboard was used for a survey) |
Stories of Active Learning: Information Technology (Case E)

<table>
<thead>
<tr>
<th>Case E</th>
<th>Information Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Goals for the course</td>
<td>• Transmission of knowledge, ability for communication, critical thinking</td>
</tr>
<tr>
<td></td>
<td>• Development of research skills (knowledge management and decision making).</td>
</tr>
<tr>
<td></td>
<td>• Connection with real life and real world problems</td>
</tr>
<tr>
<td>Active Learning Methods used</td>
<td>• Case studies requiring a multidimensional analysis</td>
</tr>
<tr>
<td></td>
<td>• Class discussion</td>
</tr>
<tr>
<td></td>
<td>• Collaborative learning (sharing of resources and ideas; collaborative development</td>
</tr>
<tr>
<td></td>
<td>of students’ research model on Knowledge Management; feedback from instructor at</td>
</tr>
<tr>
<td></td>
<td>various stages of the project)</td>
</tr>
<tr>
<td></td>
<td>• Online technologies (Use of online platforms for collaborative work; use of knowledge mapping tools)</td>
</tr>
</tbody>
</table>
Instructors’ Perception of Active Learning

• Instructors’ definition of active learning shows similarities and differences (table 1)
 - learner-centered
 - problem-based
 - action based; experiential
 - collaborative
 - focusing on the development of skills other than knowledge
Teaching Goals and Teaching Strategies

• Comparison of teaching goals
 – All aimed at knowledge, understanding, but also at developing skills for critical evaluation, analysis, application and connection with real world cases.
 – Three courses aimed directly at the development of teamwork skills
 – One course aimed at the development of research skills

• All teaching strategies were connected with the learning outcomes and the teaching goals for the course.

• Assessments were also designed to test learning outcomes and meet teaching goals.
Student Learning:
Effective Teaching Strategies (1)

• Level of engagement and autonomy of students plays a role.
 – **Group field project** (Case C) and **flipped classroom** (Case D) promoted more student autonomy.
 – In science courses (Cases A, B and C), **lab activities and lab reports** also involve high level of student engagement and help students gain practical and transferable skills (teamwork, scientific writing)
 – Prior exposure to similar material seems to increase the level of engagement and autonomy (Cases A and B)
A combination of different active learning methods can prove effective.

- In the math class (Case D), the combination of methods used (flipped lessons with follow-up in-class activities) affected positively both students’ perception of the course and student learning, as assessed by a survey.

- In the Information Systems class (Case E), class discussions, case study analysis and student project presentations produced learning and enhanced student research skills.
Student Learning: Effective Teaching Strategies (3)

Other observations made

- In-class debate and group discussion after video screenings helped resolve misconceptions on environmental issues.
- Journal entries encouraged freedom of expression and stimulated emotions.
- Group discussion boards became an effective communication tool among groups.
- Online tools (quizzes, animations, discussion boards) helped the students who engaged with them.
Challenges – Issues to Consider

- Level of course
- Composition of student population (age, educational and cultural background, major)
- Achieving depth without sacrificing breadth
- Time management
- Classroom management
- Maintaining student motivation and engagement
Conclusion

• Different teaching strategies prove effective for different STEM courses depending on course goals.

• More systematic evaluation of active learning strategies needed
 – student and instructor surveys
 – student performance
 – instructors’ conceptions of effective teaching
References

THANK YOU!

amisseyanni@acg.edu;
cmarouli@acg.edu; vivipap@acg.edu; mlytras@acg.edu;
mtgast85@acg.edu