Augmented Reality: 3D Holograms for Engaged Learning

Dr. Janet Holland Emporia State University, Emporia, KS, USA

The Future of Education, Pixel Conference, Florence Italy, June 27-28, 2019

AR Presentation Bases

Literature

Experiences

Benefits

Challenges

Educational strategies for effective implementation.

History of AR

Major tech companies-Apple, Facebook, Google, Intel & Microsoft are investing in AR's future to bring it to a mass audience.

1952

Cinematographer, **Morton Heilig** creates the world's first virtual reality (VR) machine – the **Sensorama Machine**.

1968 🔵

Ivan Sutherland creates first head-mounted display system 'The Sword of Damocles'

1982

AR is seen on TV for the first time, thanks to **Dan Reitan's** interactive AR system for weather broadcasters

1992

Louis Rosenberg develops the first fully immersive AR systems, **Virtual Fixtures**.

1994

Julie Martin uses AR in her theatre production 'Dancing in Cyberspace'.

1998

NFL debuts AR during a live game, created by Sportvision.

2000

The **ARToolKit**, the world's first open-source software library, is created by **Hirokazu Kato**.

The world's first outdoor AR game, **ARQuake**, is launched.

2009

FLARToolKit is born and developers can now display AR content on web browsers

2016

Pokemon Go launches and the world goes mad for AR reaching a peak of 45 million daily users.

Richard Corps (2017). http://adsreality.com/

1901
 First recorded reference to
 AR by the author L. Frank
 Baum when he describes the
 'Character Marker' in the
 novel The Master Key.

• 1962

Morton Heilig, patents the Sensorama Machine.

1974

Myron Krueger, builds Videoplace an 'artificial reality' lab.

- 1990

Tom Caudell, coins the term 'augmented reality'

• 1993

KARMA, a system which used knowledge-based AR, is introduced by **Steve Feiner**

1996

CyberCode is created, the first AR system using 2D markers

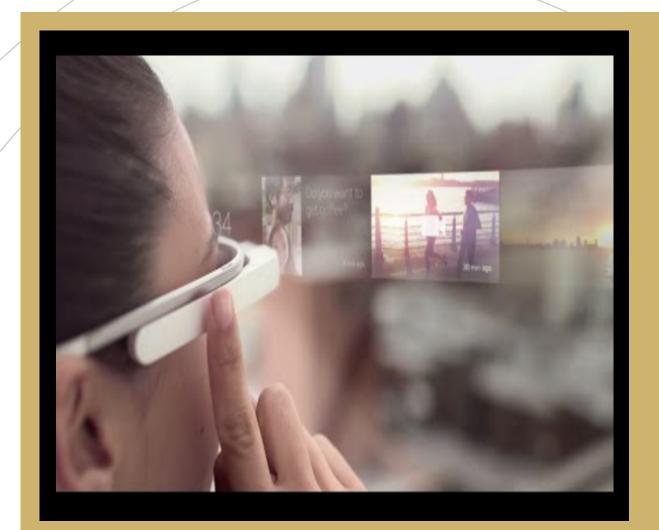
1999

Nasa utilises a special AR dashboard for navigating the X-38.

Steve Mann aka 'The father of wearable computing' creates EyeTap

2008

AR starts being used for **commercial purposes**, such as magazine ad for BMW Mini

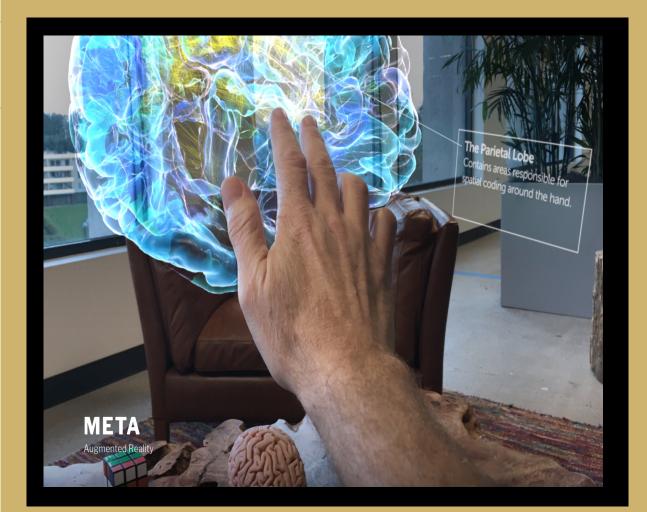

• 2012

Google Glass launches to mixed reviews

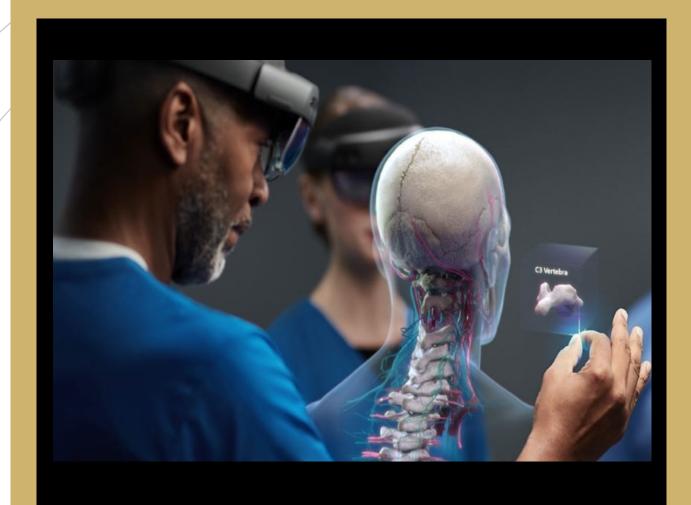
- 2017

Apple announces **ARKit** and Google launches **ARCore**. ARbased apps sky-rocket.

Google Glass, 2012


Experiment wearing Glass for one month.

New: Google's Discover Glass, 2019


Enterprise Edition for business

Meta 2 Development Kit, 2016

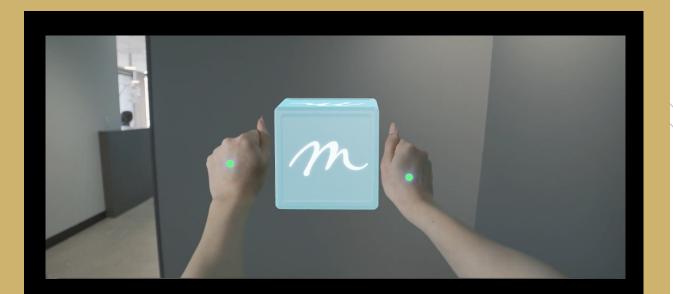
Graduate assistant experimented using Unity programming to create 3D objects.

Microsoft HoloLens 2016 & 2019



Updated in 2019

What is Augmented Reality?


3D hologram objects are overlaid on the real-world environment. Manipulate & view

objects from any angle.

Meta Interactions

Walk around 360 Degrees Look Over - Under Look Inside - Outside 1 Hand Grab & Move 2 Hand Grab & Scale, Rotate, Tilt Point to click

Instructional Goals

Needs Analysis

Identify Goals & Objectives Want interactions with the tech, content, & applications to be enjoyable, productive, engaging, & memorable.

Have a positive impact on learning.

AR Learning Benefits Cited in Literature

Social, cognitive and emotional improvements have been found when the learning environment is realistic or authentic.

Long-term memory retention by conceptualizing abstract concepts increased understanding. Learning spatial structures Physical task performance. Transparent layers provide multi-depth views & help transfer to authentic work tasks.

Collaboration

AR Learning Challenges

Usability, ineffective integration, and learner differences.

Attention tunneling caused some learners to overlook important information presented, due to the higher levels of sensory input competing for attention.

AR Technology Challenges

Internet connections Lag time & crashes Lack projection No live virtual conferencing Tethered with wires limiting movement. Weight of the devices Non-intuitive navigation

AR Cost Challenges

Tight budgets

Reductions in funding Students financially stretched, making the purchase of costly new and emerging technologies difficult.

All Fields Applications

Biology, Anatomy, Astronomy, Chemistry, Math, Geometry, and Physics.

Especially difficult to understand abstract concepts can be illustrated visually in three dimensions; such as the solar system, molecules, atoms, and the human body.

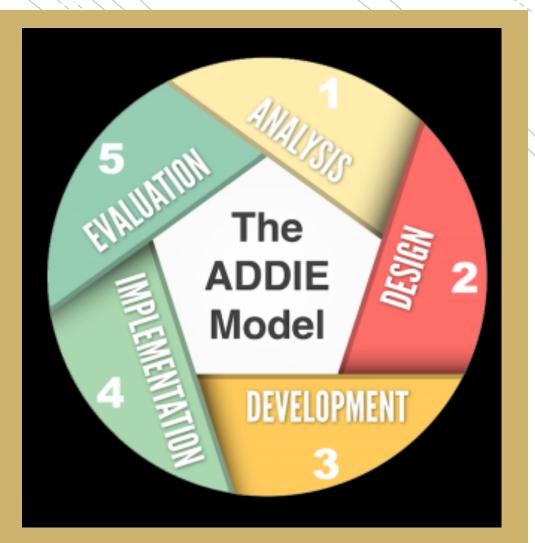
A great way to demonstrate changes over time while showing sequence of events.

Learners construct information, develop cognitive thinking skills, experience meaningful authentic hands-on learning.

Education Benefits

Enable logical learning Experiment observations Understand theoretical knowledge and activate visual knowledge.

Increase motivation, interest, curiosity to foster positive attitudes towards learning.


Instructional Design Strategies

Analyze learner needs

Set goals & objectives

Design to enhance and facilitate teaching & learning

IDT strategies include; problembased discovery, inquiry, authentic experiential contextual learning, kinesthetic, cognitive, and engaging motivational immersion.

Discovery & Inquiry Design Strategies

Problem-based with learners discovering knowledge. Use well integrated, organized, relevant materials, while simulating actual field conditions to improve learning performance. Develop deeper high-level

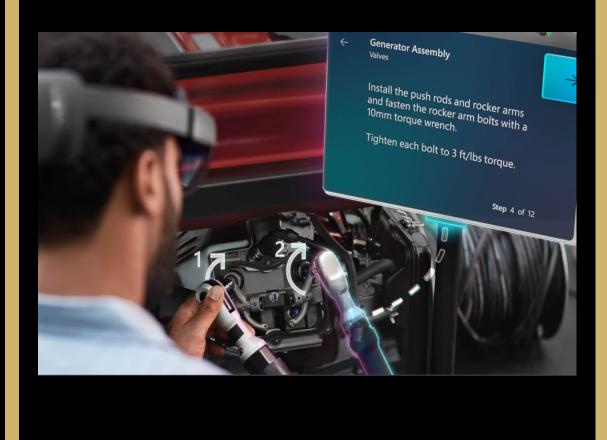
learning and self-

responsibility.

Ask Questions Gather & Communicate organize findings information Evaluate Interprete & information analyze & draw information conclusions

Experiential Contextual Design Strategies

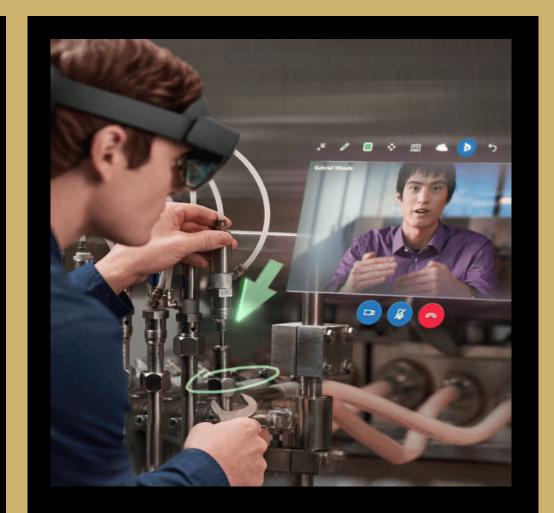
Learn new concepts through familiarity, learning by doing, applying concepts, collaboration, while transferring knowledge to new situations.


In education, concrete experiences can serve as the basis for observation and reflection to formulate new theories to test.

Immersion Engagement Design Strategies

Bridge between a real-world environment overlaid with three-dimensional interactive objects, at the same time.

Increase motivation and confidence to improve learning outcomes through increased engagement and time on task.



Knowledge Acquisition Design Strategies

Focus on learning

How the research is set up, with clear directions, training, practice, and ongoing scaffold support.

Learner centered inquiry-based learning goals and objectives is a critical factor for improving achievement.

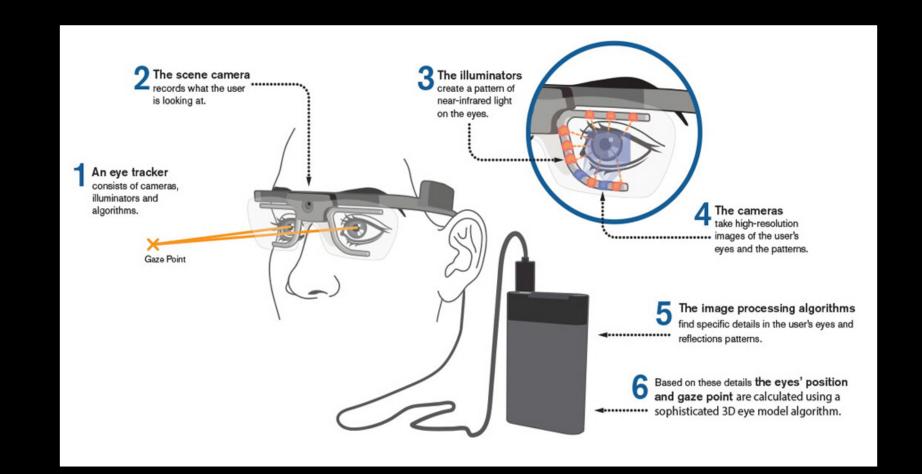
3D Learning Objects Sources

Pre-made

Modified from basic shapes Original code Free or fee based resources Highly complex layered 3D objects can take a great deal of time to create, as a result they are often costly to buy. **GitHub & Internet sites**

Create real-time 3D experiences

Get started with the most widely used real-time 3D platform. Unity Pro's enhanced benefits, paired with PiXYZ Plugin, enables the use of CAD and BIM design data to create mixed reality applications for businesses that accelerate workflows and reduce costs.


Visit Unity > Visit PiXYZ Plugin >

Evaluating AR

Learning Processes **Observations of user behavior** & performance **Attention & engagement Usability** Human factors

Eye Tracking Evaluation of AR

Common Eye Tracking Metrics Examined

(Jacob & Karn, 2003).

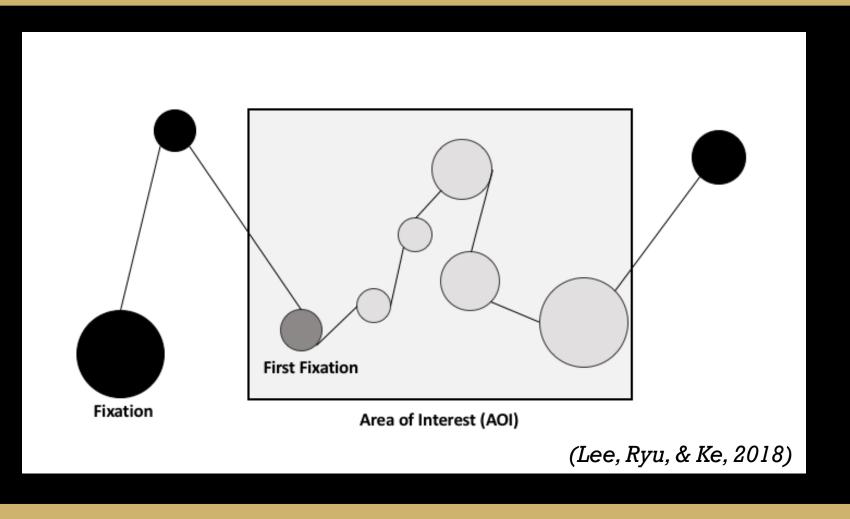
Number of fixations, overall.

Gaze % (proportion of time) on each area of interest.

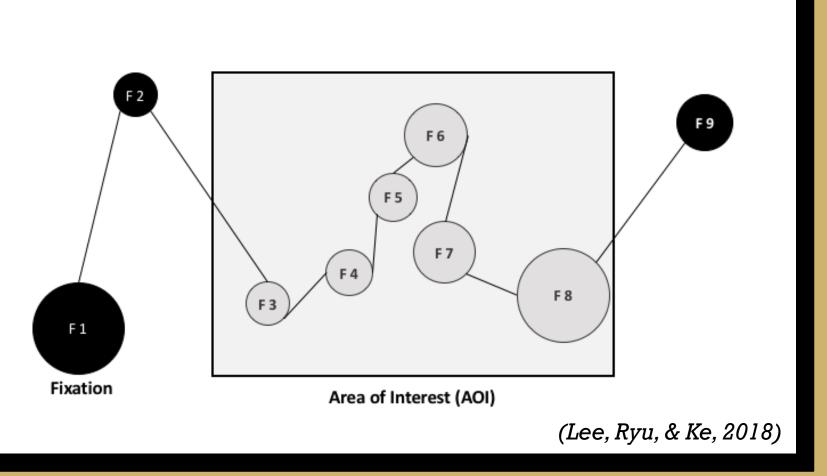
Fixation duration mean, overall.

Number of fixations on each area of interest.

Gaze duration mean, on each area of interest.

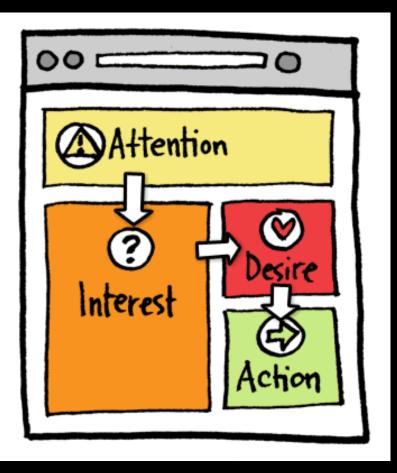

Fixation rate overall (fixation/s).

Fixation, Saccade, & Area of Interest


Gaze Plot Data Saccade Saccade Fixation Area of Interest (AOI) (Lee, Ryu, & Ke, 2018)

Time To First Fixation (TTFF) Data

Fixation Sequence

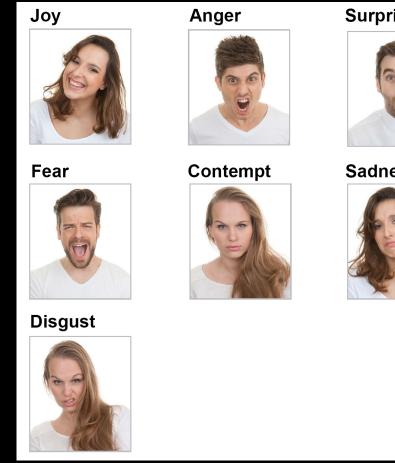

Order of Importance Data

Attention = Interest

Attention is ahead of the eyes because it plans the next destination.

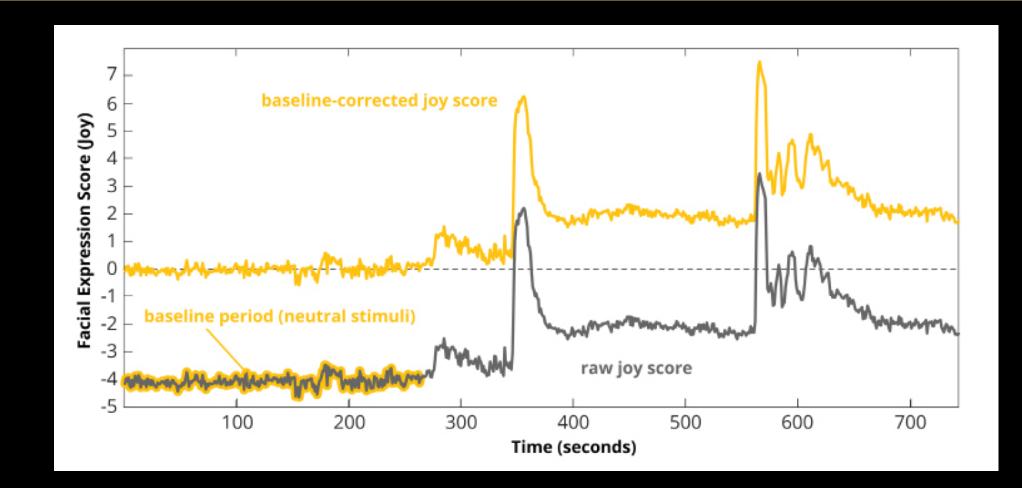
Knowing where the attention is directed helps the researcher to understand the data.

Combining Other Biometric Testing

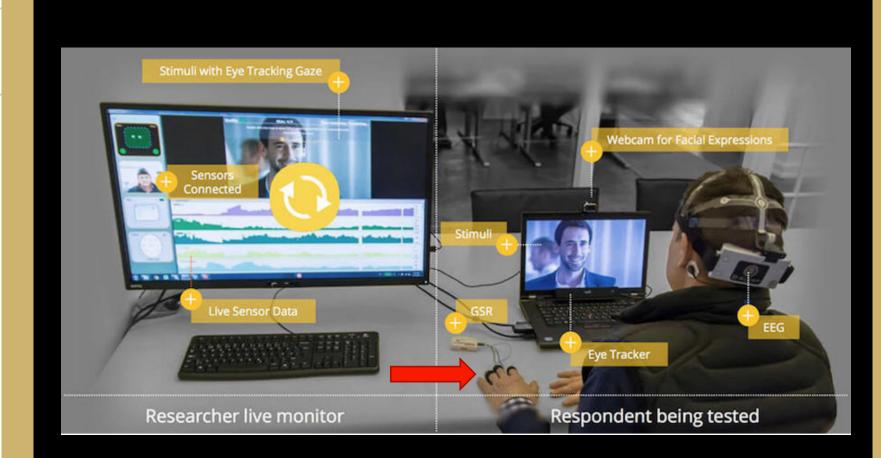

Increase Validity Increase Reliability Better sense of users' levels of emotional engagement.

We are wanting to add:

- GSR Galvanic Skin Response
- Facial Expression Analysis


	What is measured?	How is it measured?	Which metrics can be derived?	How can the data be interpreted?
Eye tracking (infrared)	Corneal reflection & pupil dilation	Infrared camera point towards eyes	Eye moments (gaze, fixations, saccades), blinks, pupil dilation	Visual attention, engagement, drowsiness & fatigue, emotional arousal
GSR (galvanic skin response)	Changes in skin conductance due to sweating	Electrodes attached to fingers, palms or soles	Skin conductance response (SCR)	Emotional arousal, engagement, congruency of self-reports
Facial Expression Analysis	Activity of facial muscles & muscle groups	(Web-)cam point towards face along with computer algorithms for feature extraction	Postion and orientation of head & facial landmarks, activation of action units (AUs) & emotion channels	Emotional valence, engagement, congruency of self-reports
(Facial) EMG (electromyogram)	Changes in electrical activity caused by muscle contraction	Electrodes attached to the skin (above muscles)	Muscle contraction onset, offset & duration, AU activity	Emotional valence, responsiveness to stimuli
ECG / EKG (electrocardiogram)	Changes in electrical activity caused by heart contraction	Electrodes attached to chest or limbs	Heart rate (HR, BPM), interbeat interval (IBI), heart rate variability (HRV)	Emotional arousal, stress, physiological activity
PPG (photoplethysmogram)	Changes in light absorption of blood vessels	Optical sensor attached to finger, toe or earlobe	Optical heart rate (HR)	Emotional arousal, stress, physiological activity
EEG (electroencephalogram)	Changes in electrical activity of the brain	Electrodes places on scalp	Frequency band power (delta, theta, alpha, beta, gamma bands), frontal lateralization & asymmetry index event-related potentials, wavelets	Attention, emotional arousal, motivation, cognitive states, mental workload, drowsiness & fatigue,

Face Expression Emotional Analysis



ise	Facial expression engines differ by the available metrics that are automatically coded:				
ess	EMOTIENT	Emotient FACET			
		 Head orientation (yaw, pitch, roll) 6 facial landmarks (ADD eye and nose position) 7 basic emotions, valence; complex states: frustration, confusion 20 Action Units respondent's sex and whether or not respondent wears glasses 			
	affectiva	 Affectiva AFFDEX Head orientation (yaw, pitch, roll) Interocular distance and 34 facial landmarks 7 basic emotions; valence, engagement, attention 14 facial expression metrics (similar to Action Units) 			
	Noldus	 Noldus FaceReader Head orientation (yaw, pitch, roll) 6 basic emotions; contempt (experimental), arousal, valence 20 Action Units 			

Face Expression Emotional Analysis

Galvanic Skin Response (GSR)

Measure emotional arousal and stress by measuring changes in the conductivity of the skin.


Attention

Knowing what grabs attention and keeps it will help to improve instructional materials and experiences. Able to keep learners on task to meet goals and objectives.

Findings

We just got our Biometric Testing Lab. Starting on a small scale, we hope to continue to grow it over time. It is very exciting to think about how we will really know if the devices and applications are truly serving our needs.

Summary Reflection

To do it well, it will take knowledge, time, and experience.

In the end we will know more about what works to engage teaching and learning.

Able to prepare learners for new employment opportunities.

Questions & Shared Experiences

Questions?

Do any of you have prior experiences to share?