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Abstract

Web-based learning has been promoted in education and students are required to retrieve online
information to complete their assignments and study for exams. Research shows that challenges exist
during information retrieval, especially with novice students. In this research, we aim to lessen these
challenges by introducing a collaborative framework that gathers students’ searched keyphrases and
analyses trends to predict the most effective subsequent keyphrase to search. The proposed solution
encourages students to contribute by sharing their information retrieval trends while collectively
benefiting from each other’s searching strategies. In addition, novice students will enrich their domain
knowledge since the prediction results contain keyphrases searched by students from previous
cohorts. Next-word prediction is a well-known area of NLP that is used to forecast the next word given
a sentence or predict trends based on time-series data. Word suggestions are popular in mobile
devices and studies show that users rely on them while they are typing. The methodology involves the
implementation of a framework designed to collect online browsing activity. Undergraduate students
studying a BSc in Computer Science were engaged to participate in an experiment wherein they
installed a Google Chrome extension capable of collecting data and predicting suitable content related
to the researched domain. The collected data consisted of URLs containing keyphrases that students
searched during their studies. A feature engineering process was performed to analyse and transform
the data into a time-series sequence of actions and to ensure that it is fit for the intended purpose. A
grid-search method was employed on various machine learning models to identify the most effective
hyper-parameters that can predict the next best keyphrase. The results obtained during an in-class
test show that students relying on the predictions generated by the machine learning models
outperformed those who depended solely on the Internet.

Keywords: Next best action prediction, Internet activity monitoring, Hyper-parameters tuning and Enhancing
learning experience.

1. Introduction
Web-based learning is increasingly gaining popularity in education. Students now have access to a
wealth of online information and educational resources, which assist them in completing assignments
and preparing for assessments [1]. However, searching for online information requires an effective
strategy and some argue that such strategies present challenges, particularly for novice students who
lack the domain knowledge required to build effective search queries [2]. Keyphrases searched by
students in queries across cohorts are not retained and are forgotten over time. Our research
suggests that collecting such data and transforming it into a time-series format, alongside a next-word
prediction model, can assist students who are novices to a domain to be exposed to new keyphrases
and also enrich the teaching experience for educators.
The methodology adopted in this research included the implementation of a data collection framework
that is capable of collecting Internet activities and browsing data [3]. The framework was distributed
among students studying a BSc in Computer Science to generate a dataset and evaluate the
effectiveness of the proposed approach. The dataset was transformed and organised into a sequence
of actions and used in an experiment that aims to identify the best machine learning algorithms and
hyper-parameters to use to predict the next best action. The best models were implemented within the
data collection framework and used during an in-class test by students to measure their effectiveness.
The results show that students relying on the proposed Google Chrome Extension and the predicted
results performed better considering the short time that was allowed. In addition, the data collected
during the session can be used by lecturers to perform data analytics on the keyphrases searched by
their students. Following a brief review in Section 2 on related work and existing technologies, the
paper presents in detail the data processing and transformation methodology used in Section 3.



Section 4 explains the model selection process while Section 5 discusses the evaluation results
obtained during an in-class test. Lastly, a conclusion is drawn in Section 6.

2. Background

Next word prediction is an application of machine learning within Natural Language Processing (NLP)
that is capable of predicting the next most suitable word in a sentence based on the context and
preceding words [4]. The more words one has to train the machine learning model the more accurate
the predictions will be [4]. Such algorithms are very commonly used while typing, especially on mobile
devices. In contrast, time-series predictions are defined as applications that rely on historical data to
build models capable of forecasting future values and trends [5]. Such data can be collected from any
device that generates data and can be used in various domains, from financial market prediction to
weather predictions [6]. Studies show that when users rely on next-word predictions, they perceive
that they require less effort to type thus improving their typing experience [7]. In their study, Lehmann
et al. [7] outlined that even incorrect predictions might be useful it was observed that some users
select incorrect predictions and then manually correct them to match their intended keyphrase. In
addition, the authors outlined that there are various selection strategies that users adopt while using
systems that predict text. Users can be divided into two main categories. Non-Suggestion Category -
users who never rely on the suggestion but use it as a source to create their keyphrase. In contrast,
Suggestion Category - are users that rely on the suggestions more frequently. Walsh et al. [8]
recommended a structure to report machine-learning-based analysis applied to biological studies.
They divided their recommendations into four main topics; Data, optimization, model and evaluation. A
similar structure was suggested by Rathee and Yede [4], the authors outlined that a data preparation
process is composed of; gathering data and transforming it into sequences, model designing and
training, predicting the next best word and measuring the accuracy of the model. The model
parameters are fine-tuned and the process is repeated until the desired accuracy is obtained.

As suggested by Zammit et al. [9], data collection can be accomplished through a Google Chrome
Extension utilizing JavaScript event listeners to gather browsing data, which is then sent to a remote
server for additional processing over Hypertext Transfer Protocol (HTTP). Such data can then be
processed and converted into a time-series format that is then used by machine learning algorithms to
predict the next word. Various studies outlined different machine learning algorithms that can predict
the next word based on time-series data. Rathee and Yede [4] worked with Long-Short Term Memory
(LSTM) and Bidirectional LSTM (BiLSTM) models to predict the next word. Their research showed that
the BiLSTM model was better than LSTM since it can capture past and future information. In fact
BiLSTM scored an accuracy of 85% as opposed to 57% scored by LSTM. LSTM can model natural
languages effectively since they can remember information over a sequence of tokens and produce
the probability of the next word in a sequence. There is a study that uses LSTM indicating its potential
to predict the next word (code syntax) for the Java programming language [10]. Random forests also
reported promising results, such an algorithm is an ensemble model that consists of many decision
trees. In Liu et al. [11] it was outlined that the approach taken by this machine learning algorithm
avoids overfitting and improves stability. In addition it was also mentioned that researchers are using
Random forests to solve regression problems. In contrast, Decision trees are designed to traverse
from the root to its leaves, their main advantage is that they are simple to interpret and they can scale
to solve bigger problems involving large datasets. Liu et al. [11] also outlined that K-Nearest Neighbor
(k-NN) can be used used since it is independent from pre-trained models and can address
classification and regression problems. Support vector machines have also been used to predict
datasets that have linguistic terms [6]. Such an algorithm separates data points by introducing
hyperplanes and they exhibit good performance in solving classification problems.

3. Data Acquisition and Preprocessing

The proposed framework is composed of two main components; a Google Chrome Extension and a
remote server. The extension is installed in Google Chrome Browser and is capable of collecting the
URLs visited and sending them to the remote server. In contrast, the remote server can extract the
keyphrases searched in search engines by the extension user from the received URL. Having a
sequence of keyphrases, the server uses machine learning to predict the next best keyphrase to
search based on historical searches. The predicted results are collected back and displayed in the
extension. As shown in Figure 1, the collaborative framework can be used by both lecturers and
students. Lecturers will contribute with keyphrases searched while preparing for the lecture or



structuring assignments. In contrast, students will receive the predicted results based on past data and
contribute to future students.

Figure 1 Collaborative Framework Overview

While browsing the Internet students are engaged in various web search sessions. A web search
session starts when a student issues a query to find online information, the query is processed by a
remote server and the result may surface on a website [12]. Student then will validate the result and
visit the website respectively. Students are engaged with such sessions to find information online
while studying, they start with a query and can continue formulating different queries until the required
result is obtained [13]. All actions take the form of URLs and the Google Chrome extension that was
implemented in this research had the capability of collecting such data and storing it on a remote
server. Students who volunteered to participate in this research were encouraged to use the Google
Chrome extension for a month during their studies and the data collected was arranged into
sequences of actions. A sequence � is a collection of actions done by a student within an hour and is
defined as � = {�1, �2, �3,…, ��} and �� ∈ �� ∪�� where �� can be either a keyphrase search ��
in a search enabled websites or a visit to a website �� . The three main search-enabled websites ��
that were identified during the experiment are Google, Stackoverflow, and Wikipedia. Keyphrases
searched by students are embedded within the URL or included in the URL query string as shown
below:

https://www.google.com/search?q=machine+learning

https://stackoverflow.com/search?q=machine+learning

https://en.wikipedia.org/wiki/Machine_learning

Table 1 shows an example of a sequence generated by a student in an hour. The Sequence Key is a
string composed of the student’s unique identifier and the timestamp when the action happened. While
the Action Data contains the keyphrase searched or the URL visited by the student, determined in the
Action Type.

Sequence Key Action Data ActionType
22fc4e4e_2023_8_24_18 machine learning Keyphrase Searched
22fc4e4e_2023_8_24_18 artificial intelligence Keyphrase Searched
22fc4e4e_2023_8_24_18 data science Keyphrase Searched



22fc4e4e_2023_8_24_18 supervised learning Keyphrase Searched
22fc4e4e_2023_8_24_18 www.techtarget.com Visited Link
22fc4e4e_2023_8_24_18 data science Keyphrase Searched

Table 1 Example of actions performed by a student

Using the Python programming language, a word embedding technique was used to represent each
sequence as a vector and build a vector space. This approach enables machine learning algorithms to
work with textual data in a way to preserve its context. Various studies show that word embeddings
are extremely effective for text classification since they can detect recurring associations in texts [14].
For a supervised machine learning algorithm, the sequence should be divided into features X and
labels y . This will allow the algorithm to train the model based on the input features given. In this
research, the learning task is trying to predict a sequence similar to time-series forecasting given a
context X to predict the action y . Since when dealing with languages, a small vocabulary will fail to
represent enough words in the corpus [10], in this research data oversampling was done by
duplicating the sequences and changing the starting point. For example, a sequence S =
{a1, a2, a3, a4} is divided into subsequences, and their respective features and labels are shown in
Table 2. Additionally, since when training machine learning algorithms, the X values of each entry
must be of the same size, each vector was left padded with a zero value to the longest vector.

Start Sequence (��) Input Features (�) Label (�)
�1 {�1, �2} {�1} �2
�1 {�1, �2, �3} {�1, �2} �3
�1 {�1, �2, �3, �4} {�1, �2, �3} �4
�2 {�2, �3} {�2} �3
�2 {�2, �3, �4} {�2, �3} �4
�3 {�3, �4} {�3} �4

Table 2 Example of subsequences

Walsh et al. [8] explained that reporting statistics on the dataset distribution can help understand if
there is a good representation of the domain being explored. Figure 2 shows the distribution of labels
after transforming the dataset into sequences. Each label ln on the x axis represents a distinct
keyphrase while the y axis shows the total number of occurrences of an instance. Students’ search
behaviors depends on various factors such as diversity of interests or the popularity of certain topics,
these factors can lead to an uneven distribution of the search frequencies among different keyphrases.

Figure 2 Label distribution showing the area between the upper and lower standard deviation

h


4. Model Selection

In this research, a variety of machine learning models were taken into consideration. Their
implementation was sourced from popular libraries, including scikit-learn [15] for Logistic Regression,
Naive Bayes, K-Nearest Neighbors, Support Vector Classifier, Random Forest, and Decision Tree. In
addition, the PyRCN [16] implementation of Echo State Network and Extreme Learning Machine was
used. TensorFlow [17] was used for the implementation of GRU, and LSTM. Since such libraries are
widely used, they provide a standard and efficient implementation that can be easily used and
evaluated. The documentation provided for each model was analysed to identify the hyper-parameters
that can be fine-tuned relevant to each algorithm.

Liu et al.[11] used various machine learning algorithms such as SVM, Random Forests and k-NN to
detect DDOS attacks on software-defined networks. Such machine learning algorithms were used to
learn normal traffic patterns, detect anomalies and identify DDOS automatically. In addition, they
outlined the importance of feature engineering and they suggest various evaluation matrices such as
precision, recall and F1 scores, that can be used to evaluate the quality of machine learning algorithm
predictions. In this research, precision (Equation 1) and recall (Equation 2) were used together with
their F1 ratio. Where TP and TN refers to true positive and true negative results while FP and FN
refers to false positives and false negatives respectively.

�L�Y���O� = ��
��+�� (1) ��Y�ੲੲ = ��

��+�� (2)

To avoid overfitting and underfitting a good choice of optimization strategy is important when selecting
a machine learning algorithm [8]. In addition, various studies show that a proper evaluation can be
achieved by dividing the dataset into training and testing batches [5], [6], [10]. In this research, the
computed dataset was divided into 80% training and 20% testing and scikit-learn GridSearchCV was
used to perform an exhaustive search over all the parameters values for each machine learning
algorithm with a cross-validation of three (3). Table 4 shows the algorithms used and the best hyper-
parameters that were identified during the GridSearchCV.

Model Name Parameters
Dummy Classifier
sklearn.dummy

strategy: most_frequent

Logistic Regression
sklearn.linear_model._logistic

C: 0.1 penalty: l1 solver: liblinear

Gaussian Naive Bayes
sklearn.naive_bayes

priors: None

Extreme Learning Machine Classifier
pyrcn.extreme_learning_machine._elm

activation: tanh activation_func: sigmoid alpha: 1.0
chunk_size: 10 n_hidden: 50 ridge_alpha: 0.1 solver: lsqr

K-Nearest Neighbors
sklearn.neighbors._classification

n_neighbors: 3 weights: distance

Echo State Network Classifier
pyrcn.echo_state_network._esn

alpha: 1.0 bias_scaling: 1.0 input_scaling: 1.5 leakage: 0.8
n_reservoir: 50 sparsity: 0.2 spectral_radius: 0.9

Multi-layer Perceptron
sklearn.neural_network._multilayer_pe
rceptron

activation: relu alpha: 0.01 batch_size: 5
hidden_layer_sizes: [100, 50] learning_rate: adaptive
max_iter: 1000 solver: sgd

SVC
sklearn.svm._classes

C: 1 gamma: 0.001 kernel: poly max_iter: 500

GRU
tensorflowkeras.layers

epochs: 200 model__activation: softmax model__layer: GRU
model__learning_rate: 0.01 model__loss:
mean_squared_error model__recurrent_dropout: 0.25
model__units: 50

LSTM
tensorflow.keras.layers

epochs: 200 model__activation: softmax model__layer:
LSTM model__learning_rate: 0.01 model__loss:
mean_squared_error model__recurrent_dropout: 0.75



model__units: 50
Random Forest
sklearn.ensemble._forest

max_depth: 20 min_samples_leaf: 1 min_samples_split: 2
n_estimators: 200

Decision Tree
sklearn.tree._classes

max_depth: 30 min_samples_leaf: 1 min_samples_split: 2

Table 3 Best Hyper Parameters Identified

Once the best hyper-parameters were identified, each model was used to predict the next-best word
using the training and testing sequence data. Such a technique facilitates the detection of overfitting
and evaluating the effectiveness of the machine learning model. As part of the evaluation process,
scikit-learn DummyClassifier was used as a baseline classifier. Such a classifier makes predictions
using simple techniques such as predicting the most frequent label or generating random predictions.
Figure 3 shows the F1 score computed from the precision and recall.

Figure 3 Algorithms evaluation results (F1 Scores)

All trained models scored better than the DummyClassifier, suggesting that each model has some
element of learning. Scoring was higher when predicting training data since such data was used to
train the internal logic of the models. Lower scores were expected when predicting testing data, given
that some of the data was unseen during model training. Selection of the best models was based on
accuracy and F1 scores on the training data, with GRU, LSTM, and Decision Trees models ranking
highest in accuracy, and Random Forest, LSTM, and Decision Trees in F1 scores. The best models
were trained and deployed on a remote server, with their prediction results accessible to students via
a Google Chrome Extension (refer to Figure 4). This extension collects browsing data from students’
Chrome browsers and sends it as a sequence to the remote server. The server then uses scikit-learn
VotingClassifier to predict results using all models, returning the most accurate prediction between the
models.

Figure 4 Google Chrome Extension showing next word prediction



5. Evaluation

The evaluation methodology involved eleven (11) undergraduate students studying for a BSc Degree
in Computer Science at the University Of Wolverhampton who volunteered to participate in this
research. Furthermore, a collaborative session with various lecturers was held to select a topic that
students are not familiar with so that it will be used as an assessment during evaluation. ClickHouse
https://clickhouse.com/ emerged as the chosen topic, given its relevance to data science and software
engineering projects. An introduction session was held to explain to the students the rationale behind
the study and to provide a tutorial on how to install and use the Google Chrome Extension. All
students were subjected to a multiple choice pre-test on ClickHouse to void a potential biasing factor
and to provide a baseline on the subject knowledge as suggested by De Raffaele et al. [18]. Five (5)
students were chosen randomly to serve as a Control group, while the remaining students were
assigned to the Evaluation group and instructed to install the Google Chrome Extension. Both groups
were instructed to do another multiple-choice test related to ClickHouse having questions structured
differently from the pre-test to avoid possible influence. The control group was instructed to use the
Internet during the test to find the correct answers while the evaluation group was instructed to use the
Internet and the proposed Google Chrome extension suggestions.

Mean difference =
1
� �=1

�

(� �� −��)
(3)

� is the number of paired tests done.
�� is the pre-test score for paired test �.
�� is the final test score for paired test �.

The pre-test and the test scores obtained were aggregated and statistical analysis was performed as
reported in Table 5. The low pre-test score (P�) shows that the biasing factor was very low and
students had very low knowledge of the test topic (Clickhouse) before the evaluation process. To void
the biasing factor, the pre-test score was deducted from the test score and the mean difference (P� −
T�) was computed for all paired tests as outlined in Equation 3. The result shows that students within
the evaluation group that relied on the proposed approach performed better (82%) than the control
group (52%). Such difference indicates that the proposed approach provided educational advantages
to the evaluation group. As reported in Table 5, the independent and the dependent t-statistic values
when observing the scores obtained by both the evaluation and the control groups. A p < 0.05
denotes that the results obtained have a high statistical significance and are unlikely to have occurred
by chance. Thus sustaining that the proposed approach impacted the data observed.

Total
Students

Pre-Test
Average Score

Test Average
Score

Difference Std
Dev

T-statistic

(��) (�� ) (�� −��) (�) (�)

Evaluation 5 2.00% 84.00% 82.00% 19.24 9.53 � < 0.05
Control 6 6.67% 58.33% 51.66% 19.41 6.52 � < 0.05
Independent 2.59 � < 0.05

Table 5 Evaluation Results

6. Conclusion

This research aimed to address some of the challenges faced by students while retrieving online
information for educational purposes. By introducing a collaborative framework that harnesses the
power of machine learning to predict subsequent keyphrases based on historical search trends, and
thus enriching the student’s learning experience. The methodology adopted, included data collection,
transformation, and model selection, where various machine learning algorithms were evaluated. The
best algorithms that were identified included, GRU, LSTM, and Decision Trees based on accuracy and
F1 scores. The framework evaluation showed that students relying on the Google Chrome Extension
predictions exhibited improved scores when compared to those relying solely on internet searches.
This highlights the potential of such an approach to assist students and improve their experience.
Further research could explore the evaluation of the framework across diverse educational domains
and student populations.

https://clickhouse.com/
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