Optimising Student Internet Navigation: A Comparative Analysis of Machine Learning Algorithms for Action Prediction

Omar Zammit Serengul Smith Clifford De Raffaele

Table of Contents

Introduction

Problem Definition Existing Technologies

Proposed Solution

Research Methodology Data Collection Framework Determine Best Algorithm

Implementation

Evaluation

Conclusion

Terminologies

Figure: A web search session as explained in Kim et al. 2012

・ロト ・四ト ・ヨト ・ヨト

- Students have access to a wealth of online information and educational resources.
- Students require such information to complete assignments and prepare for exams (Tsai 2009)
- Finding useful information online requires a good searching strategy and prior domain knowledge.
- Novice students who lack domain knowledge will struggle (Debowski 2001).
- Keyphrases searched by students in queries across cohorts are not retained and are forgotten over time.

- An application of Natural Language Processing (NLP).
- Predicting the next most suitable word in a sentence based on preceding words (Rathee and Yede 2023).
- More words more accurate the predictions will be (Rathee and Yede 2023).
- Commonly used in mobile devices
- Improves typing experience (Lehmann et al. 2023)
- Time-Series Prediction.
- Forecasting future values and trends (Shi et al. 2023).

Research Methodology

Data Collection Framework

Figure: Collaborative Framework Overview

イロト イヨト イヨト イヨト

Collected Data

G https://www.google.com/search?q=machine+learning

https://stackoverflow.com/search?q=machine+learning

https://en.wikipedia.org/wiki/Machine_learning

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Table: Extracting Keyphrases

sequence_key	action_data
22fc4e4e_2023_8_24_18	machine learning
22fc4e4e_2023_8_24_18	artificial intelligence
22fc4e4e_2023_8_24_18	data science
22fc4e4e_2023_8_24_18	supervised learning
22fc4e4e_2023_8_24_18	www.techtarget.com
22fc4e4e_2023_8_24_18	unsupervised learning
22fc4e4e_2023_8_24_18	data science

メロト メロト メヨト メヨト

Table: Sequences (1 Word)

sequence_key	action_data
22fc4e4e_2023_8_24_18	machine learning
22fc4e4e_2023_8_24_18	artificial intelligence
22fc4e4e_2023_8_24_18	data science
22fc4e4e_2023_8_24_18	supervised learning
22fc4e4e_2023_8_24_18	www.techtarget.com
22fc4e4e_2023_8_24_18	unsupervised learning
22fc4e4e_2023_8_24_18	data science

・ロン ・回 とくほど くほど

Table: Sequences (3 Word)

sequence_key	action_data
22fc4e4e_2023_8_24_18	machine learning
22fc4e4e_2023_8_24_18	artificial intelligence
22fc4e4e_2023_8_24_18	data science
22fc4e4e_2023_8_24_18	supervised learning
22fc4e4e_2023_8_24_18	www.techtarget.com
22fc4e4e_2023_8_24_18	unsupervised learning
22fc4e4e_2023_8_24_18	data science

イロト イロト イヨト イヨト

Precision:

Precision measures the accuracy of positive predictions.

$$\mathsf{Precision} = \frac{TP}{TP + FP}$$

Recall (Sensitivity):

Recall measures the ability of the model to capture all positive instances.

$$\mathsf{Recall} = \frac{TP}{TP + FN}$$

F1 Score:

The F1 score is the harmonic mean of precision and recall.

$$F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Results

Figure: F1 scores obtained after the grid search.

・ロト ・四ト ・ヨト ・ヨト

Prediction Engine

Example 1: Training During a Machine Learning Class

G machine learning - Googl × +	_ = ×
← → C 😰 google.com/search?q=machine+learning&oq=machine+&gs_lcrp=EgZja @, ☆	Ð∣∰ :
Google machine learning × 4 @	م أ
All Images Videos News Books ! More	Tools
Examples Tutorial Types Vs deep learning For Kids PDF Vs Al	W3Schools
Wikipedia https://mr.wikipedia.org , wiki - Machine_learning] Machine learning Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from	
People also ask 🕴	
What is exactly machine learning?	~
What is machine learning with an example?	~
What are the 4 types of machine learning?	× ,.

メロト メロト メヨト メヨト

Example 2: Training While Preparing For a Lecture

G Clickhouse Database - G × +	_ 0	×
→ ♂ 😫 google.com/search?q=Clickhouse+Database&sca_esv=7fd248ba2150aff	t)	1
Google Clickhouse Database X 4 🔅	٩	Î
All Images Videos News Maps I More	Tools	J
ClickHouse: Fast Open-Source OLAP DBMS ClickHouse: Fast Open-Source OLAP DBMS ClickHouse: a fast open-source colume-oriented database management system that allows generating analytical data reports in real-time using SQL queries. Docs		
Distinctive Features - Use cases - SQL Reference Install ClickHouse		
Real-Time Data Analytics The fastest open-source analytical database ClickHouse is a		
Our Story Who we are. ClickHouse launched in 2012 with the vision of being		

Example 3: Lacking When Searching Some Keyphrases

In-Class Test design

- Brainstorming session with the subject matter lecturer to design tests.
- Focused on topics not yet discussed during the lectures.
- Closed-ended multiple choice was used to avoid subjective answers.
- Question type included: Acronymns, Problem Solving and Theoretical.
- 6 students acted as the control group while 5 as the evaluation group.

Table: Evaluation Results

	Evaluation	Control
Total Students	5	6
Pre-Test Average Score $(ar{P})$	2.00%	6.67%
Test Average Score $(ar{T})$	84.00%	58.33%
Difference $(\bar{P} - \bar{T})$	82.00%	51.66%
Std Dev (σ)	19.24	19.41

・ロン ・四 と ・ ヨ と ・ ヨ と

- $\checkmark\,$ Knowledge gain The evaluation group performed better.
- $\checkmark\,$ Motivation Students showed a high level of enthusiasm while using the application.
- $\checkmark\,$ Novice Students Such students will gain advantages from key phrases extracted from modules of previous years.
- X Privacy Students expressed concerns regarding the data collection system during browsing.
- X Unseen Data When the system lacks training on a particular topic, the suggestions provided may be ambiguous.

- Data collection, model selection and evaluation of various machine learning algorithms.
- Results showed that the evaluation group performed better.
- The approach provided a pedagogical benefit.
- Future research opportunities include evaluation across diverse educational domains and student populations.

Thank You

Omar Zammit ozammit@ieee.org Serengul Smith s.smith@mdx.ac.uk Clifford De Raffaele c.deraffaele@mdx.ac.uk