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Abstract 

 

Dyslexia is a complex learning difficulty that impacts reading, spelling, and can manifest in the visual–

motor aspects of handwriting. Early detection is critical but can be hindered by subjective or overly 

narrow assessments. This paper presents a dual-model pipeline that integrates (1) Gemini 2.0 Flash 

Exp for image-based handwriting analysis and (2) OpenAI O1 for text-based spelling assessment, 

with a transparent logistic regression classifier. On a balanced dataset of 100 handwriting samples 

(50 dyslexic, 50 non-dyslexic), the pipeline achieved near-perfect classification on a 20-sample 

validation subset. We show how combining morphological and text-driven features into a single 

representation allows logistic regression to produce a continuous dyslexia probability, enabling 

threshold-based categorization. While future studies with larger samples and additional modalities 

(e.g., reading fluency, eye tracking) are needed, this work sets a foundation for multi-cue, 

interpretable dyslexia screening methods. 

 

1. Introduction 

 

1.1 Dyslexia and the Need for Early Detection 

 

Dyslexia affects approximately 5–10% of the global population and is primarily characterized by 

reading and spelling challenges, often accompanied by difficulties in handwriting [1], [2]. Without early 

screening, children risk lagging in literacy and broader academic skills. Traditional diagnostics are 

time-intensive, typically requiring specialized, one-on-one evaluations, which can overwhelm 

educational systems. 

 

1.2 Emergence of Data-Driven Screening Tools 

 

Researchers in fields such as special education and computational linguistics have pursued 

automated dyslexia screening methods. Many focus on either letter formation (e.g., reversed letters) 

or textual spelling errors [3], [4]. However, dyslexia’s complexity suggests that both orthographic–

motor and phonological–lexical signals should be integrated for higher accuracy. 

 

1.3 Large Language Models for Multimodal Features 

 

Recent large language models can capture nuanced patterns in handwriting images and text. Gemini 

2.0 Flash Exp specializes in visual analysis, extracting metrics like letter reversals or spacing 

anomalies, while OpenAI O1 interprets text to measure spelling accuracy and phonetic plausibility. 

This multimodal information feeds into a logistic regression classifier for a unified dyslexia risk score. 

 

1.4 Outline of the Work 

 



 

Sections below discuss dyslexia’s neurocognitive basis, the 100-sample dataset, and the dual-model 

pipeline. We detail feature extraction from the two LLMs, explain logistic regression and thresholding, 

present near-perfect validation results, and explore future directions such as integrating reading 

fluency and eye-tracking data. 

 

2. Background and Rationale 

 

2.1 Dyslexia and Visual–Motor Connections 

 

Although dyslexia is closely associated with phonological deficits, handwriting irregularities are also 

frequently observed [5]. Letter reversals, drifting baselines, and spacing inconsistencies can reflect 

combined cognitive and motor challenges [6]. Automated image-based detection of these 

morphological anomalies provides a complementary view of dyslexia risk. 

 

2.2 Textual Orthographic–Phonological Deficits 

 

Dyslexic learners often produce spelling errors marked by missing or repeated letters, reduced 

spelling accuracy, and phonetic approximations [3], [7]. Capturing these patterns in text can increase 

the sensitivity of screening tools. 

 

2.3 Importance of a Unified Approach 

 

A single channel of evidence risks missing the multifaceted nature of dyslexia. Integrating 

morphological and textual cues yields a richer feature space, potentially improving accuracy. 

Moreover, logistic regression offers a transparent way to weigh these features in estimating dyslexia 

probability [8], [9]. 

 

3. Dataset Overview and Ethical Considerations 

 

3.1 Publicly Accessible Data 

 

Experiments utilize a public dataset of 100 handwriting samples (50 dyslexic, 50 non-dyslexic). Each 

includes a short handwritten passage and a text transcription. All identifying information is removed, 

preserving anonymity [10]. 

 

3.2 Ethical Protocols 

 

The dataset is anonymized and intended for research. This automated screening is not a substitute 

for clinical diagnosis but aims to assist early risk identification. 

 

3.3 Splitting and Balancing 

 

The data is split 80/20 for training and validation, each portion balanced for dyslexic vs. non-dyslexic. 

Random selection is used to avoid sampling bias. 

 

4. Dual-Model Architecture 

 

4.1 Overview 

 

Two specialized large language models produce complementary feature sets: 

● Gemini 2.0 Flash Exp: Extracts handwriting morphology metrics. 

● OpenAI O1: Analyzes text spelling and phonetic plausibility. 



 

A logistic regression model unifies these features into a single dyslexia probability score. 

 

4.2 Gemini 2.0 Flash Exp 

 

This visual model detects letter formation errors, spacing anomalies, letter reversals, and other 

metrics. It outputs numeric feature values (e.g., percentage of reversed letters) for each handwriting 

sample. 

 

4.3 OpenAI O1 

 

OpenAI O1 processes text transcripts to quantify spelling accuracy, rate of phonetically plausible 

misspellings, and correction frequency. These textual metrics highlight orthographic–phonological 

alignment. 

 

4.4 Combined Feature Vector 

 

The final input to logistic regression is a concatenation of morphological (from Gemini) and textual 

(from OpenAI O1) metrics, yielding a 14-dimensional numeric representation. 

 

5. Feature Extraction and Numeric Representation 

 

5.1 Morphological Attributes from Gemini 2.0 Flash Exp 

 

Examples include: 

● Letter Reversals: Percent of reversed or mirrored letters. 

● Irregular Spacing: Fraction of word boundaries outside typical spacing. 

● Baseline Disruptions: Proportion of letters drifting from the baseline. 

● Omissions/Additions: Frequency of missing strokes or extraneous marks. 

 

5.2 Textual Measures from OpenAI O1 

 

● Spelling Accuracy: Correct words ÷ total words × 100. 

● Phonetic Accuracy: Ratio of phonetically plausible errors to total errors. 

● Percentage of Corrections: Corrected words ÷ total words × 100. 

 

5.3 Combining Both Sets 

 

These features are concatenated into a 14-dimensional vector, which logistic regression uses to 

compute a probability of dyslexia. 

 

6. Logistic Regression and Thresholding 

 

6.1 Logistic Model Formula 

 

The probability of dyslexia given feature vector x\mathbf{x} is 

Prob(dyslexia∣x)=11+e−z,\text{Prob(dyslexia}|\mathbf{x}) = \frac{1}{1 + e^{-z}}, 

where 

z=β0+∑i=1nβixi.z = \beta_0 + \sum_{i=1}^n \beta_i x_i. 

 

6.2 Partial Contributions 

 



 

By summing each βixi\beta_i x_i, we see how morphological and textual metrics combine to shift the 

log-odds of dyslexia. 

6.3 Threshold Partitioning 

 

Two thresholds (e.g., 0.3 and 0.7) can segment results into “normal,” “suggestive,” or “highly 

suggestive” categories, facilitating practical classroom screening. 

 

7. Experimental Setup 

 

7.1 Data Preparation 

 

Eighty samples are used for training, 20 for validation. Features from Gemini 2.0 Flash Exp and 

OpenAI O1 are concatenated. Logistic regression fits the data, exploring different regularization 

parameters. 

 

7.2 Model Training 

 

A small grid search optimizes the regularization parameter CC. Alternative classifiers (random forest, 

gradient boosting) were tested, but logistic regression was chosen for interpretability. 

 

7.3 Validation Procedure 

 

On the 20-sample hold-out, predicted dyslexia probabilities are calculated. Accuracy and balanced 

accuracy are computed, along with a confusion matrix. 

 

8. Results and Analysis 

 

8.1 Quantitative Performance 

The final model achieved 100% accuracy on the 20-sample validation set. Dyslexic samples typically 

had probabilities above 0.7, while non-dyslexic were below 0.3. 

 

 
(Figure 1: Probability distribution) 

 

8.2 Coefficients 

 



 

A negative intercept (around β0=−5.2\beta_0 = -5.2) combined with positive coefficients for 

morphological errors and poor spelling accuracy suggests these features strongly indicate dyslexia. 

Certain features (e.g., inconsistent letter sizing) were less predictive in this dataset. 

 
(Figure 2: Logistic regression: Calculated coefficients). 

 

8.3 Confusion Matrix 

 

All dyslexic samples were classified correctly, as were all non-dyslexic samples. Though this perfect 

result could reflect limited sample variance, it demonstrates the pipeline’s potential. 

 

9. Extended Discussion 
 

9.1 Interpretability and Educational Utility 

 

Logistic regression’s coefficients give educators transparent insight into which handwriting or spelling 

anomalies influenced a screening result, aiding communication with parents and specialists. 

 

9.2 Potential Overfitting 

 

Given the small sample, perfect validation accuracy might not generalize. Larger, more diverse data 

will reveal whether partial overlaps exist in feature space. 

 

9.3 Comparison with Single-Modality Approaches 

 

Historically, single-modality (morphological or textual only) tools achieve lower accuracy. Combining 

both modalities appears to capture broader dyslexia indicators. 

 

9.4 Inclusion of Reading Fluency or Eye Tracking 

 

Extending the pipeline with reading-rate metrics or eye-tracking data could better profile borderline 

cases. Such tri-modal or multi-modal systems could further enhance screening sensitivity. 

 

10. Benchmarking Against Literature 

 

● Rule-Based Systems: Typically 70–85% accuracy, lacking adaptability. 

● Neural Networks: High accuracy but low interpretability. 



 

● Multi-Cue Approaches: Generally boost accuracy by combining orthographic, morphological, 

and phonological signals. Our results align with these findings, albeit on a relatively small 

dataset. 

 

11. Future Outlook 

 

11.1 Large-Scale Validation and Cross-Linguistic Testing 

 

Testing thousands of diverse samples is crucial for robust validation. Orthographic depth varies by 

language, so customization may be required for languages beyond English. 

 

11.2 Integration of Reading Fluency 

 

Adding words-per-minute or real-time error tracking can detect subtle reading deficits, providing a 

richer risk profile. 

 

11.3 Eye-Tracking Data 

 

Metrics such as fixation duration and regression rate are known to correlate with reading disorders. 

Incorporating these could yield a more comprehensive dyslexia risk assessment. 

 

11.4 Automatic Transcription 

 

If reliable handwriting recognition becomes standard, the pipeline could run end-to-end with minimal 

human intervention, though recognition errors must be carefully managed. 

 

12. Conclusion 

 

By fusing morphological and textual features through logistic regression, our pipeline accurately 

differentiates dyslexic and non-dyslexic handwriting samples in a small controlled dataset. The 

synergy of Gemini 2.0 Flash Exp and OpenAI O1 illuminates how letter reversals, spacing anomalies, 

spelling errors, and phonetic plausibility form a cohesive dyslexia risk profile. Future research should 

validate these findings at scale, potentially adding reading fluency and eye-tracking for more 

comprehensive screening. 
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