

The Future of Learning: Teaching Software Development in the Age of

Robert Pucher (Technikum Wien) Robert Mischak (FH JOANNEUM Graz)

Florence, June 2025

AI's role in software engineering education Applications across development phases

AI disruption of traditional teaching ISTQB Curriculum Practical Tester redesign and assessment innovations

The Paradigm Shift in Education

Challenge – Al Automation vs. Learning

Software Development Process

Software Development Process and AI

Influence of AI-tools on teaching

Phase of Software Engineering	Influence of AI Tools on Teaching	Examples of Al-Integration
Requirements Engineering and Planning	+ Low	Natural Language Processing (e.g., requirement analysis, user story validation)
Software Design and Architecture	++ Medium	AI-assisted design suggestions, pattern recognition
Coding and Code Generation	+++ High	GitHub Copilot, code completion, syntax correction
Software-Testing	+++ High	Machine Learning for test case generation, test optimization
Debugging and Maintenance	++ Medium	AI-supported log analysis, anomaly detection, predictive maintenance
Project Management	+ Low	Data-driven effort estimation, risk prediction

Constructive Alignment in Al Education

Learning Outcomes

Clear AI-aware objectives

Learning Activities

AI-integrated exercises

Assessment Methods

Beyond AI capabilities

Curriculum Design Principles

Bloom's Taxonomy for AI Competence

Rethinking Assessment

Traditional Problem

AI solves assignments completely

Assessment Challenge Difficult to measure real competence

New Approach

Process-based evaluation methods

New (old) Assessment Approaches

ညြန်

Oral Exams

Real-time questioning

Live Problem-Solving Observed coding sessions

Reflective Projects

Process documentation

Case Study – ISTQB Practical Tester

- Program Structure: 15 chapters with clear objectives
- Al Integration: Embedded assessment tools
- Outcomes-Based: Structured learning progression

Al in Assessment – Hybrid Model

AI Preliminary Review

Automated initial evaluation

Human Expert Verification Final grading by instructors **Combined Feedback**

Comprehensive assessment

Role of the Instructor

Methodological Competence and AI Literacy

AI-Driven Teaching Infrastructure

_	
	••]
	••)
_	

High-Performance Equipment

Powerful computing resources

()

Robust Connectivity

Reliable high-speed networks

AI Tool Access

Licensed educational platforms

Conclusion

Embrace AI Integration, not prohibition

Enhanced Learning Improved motivation and mastery

Scalable Education

Efficient and fair assessment

Recommendation

AI literacy is foundational. Educators must prepare students to use AI critically, ethically and creatively in academic and professional contexts.