The Future of Education

Digital Library Directory > New Perspectives in Science Education 7th Edition 2018
New Perspectives in Science Education 7th Edition 2018

Teleological Structure of Scientific and Mathematical Education

Juan Antonio Macías-García; Carolina Martín-Gamez; José Luis González Marí; Francisca García Pardo

Abstract

One of the main educational objectives in the current Spanish curricula is to develop mathematical and scientific competences, understood as the set of skills and abilities needed to apply Mathematics and Science in situations where are required. This is therefore closely related, on one hand, to the functionality of the knowledge, in the sense of its usefulness in problem solving and in mathematical and science modelling problems. And, on the other hand, is related to the understanding of disciplinary knowledge, a cognitive phenomenon that enables and gives competence to the individual to elaborate contextualised and accurate answers. These answers involve the use of mathematical and scientific knowledge in some of the categories of their phenomenological and epistemological dimensions. For this reason, in this work we carry out a theoretical and reflexive analysis that tries to determine which aspects of the Mathematics and Science Education should be promoted in order to optimize the formative dimension of an individual in these disciplines. This dimension, frequently forgotten in learning and teaching processes, turns out to be, in conjunction with the functional and instrumental dimensions, necessary to acquire the appropriate knowledge in Mathematics and Science that will enable future citizens to permanently adapt to the environment and eventually transform it positively. The results of the analysis show the components of this dimension that should be prioritised in the Science and Mathematics Education: the intellectual autonomy, understood as the ability to think for ourselves and to put in use our abilities and skills to generate information to solve real life problems and to make the right decisions; the moral autonomy, defined as the capacity to face with real life problems with ethical implications; and the social autonomy, understood as the aptitude to make decisions using social abilities and skills. Lastly, this work provides some key aspects to develop these autonomies from the Science and Mathematics Education.

Keywords: Science and Mathematics Education; autonomies; formative dimension; mathematical and scientific competences;

References

[1] Chiappetta, E. L., Sethna, G. H. & Fillman, D. A. (1993). “Do middle school life science textbooks provide a balance of scientific literacy themes?” Journal of Research in Science Teaching, 30 (7), 787-797.
[2] Gallardo, J. & González, J. L. (2006). “Una aproximación operativa al diagnóstico y la evaluación de la comprensión del conocimiento matemático.” PNA, 1(1), 21-31.
[3] Gallardo, J., González, J. L. y Quintanilla, V. A. (2014). “Sobre la valoración de la competencia matemática: claves para transitar hacia un enfoque interpretative.” Enseñanza de las Ciencias, 32 (3), 319-336.
[4] Gallardo, J., González, J. L. y Quispe, W. (2008). “Interpretando la comprensión matemática en escenarios básicos de valoración. Un estudio sobre las interferencias en el uso de los significados de la fracción.” Revista Latinoamericana de Investigación en Matemática Educativa RELIME, 11(3), 355-382. 
[5] Irez, S. (2009). “Nature of Science as Depicted in Turkish Biology Textbooks”. Science Education, 93, 422-447.
[6] Jimenez, J. D. (2000). “El análisis de los libros de texto”. In Perales Palacios F. J. & Cañal de León P. (Eds.), Didáctica de las Ciencias Experimentales. Teoría y Práctica de la Enseñaza de las Ciencias  (pp. 309-322). Alcoy: Marfil.
[7] López-Melero, M., Mancila, I., y Sole, C. (2016). “Escuela Pública y Proyecto Roma. Dadme una escuela y cambiaré el mundo.” Revista Interuniversitaria de Formación del Profesorado, 85 (30.1), 49-56.
[8] Martín-Gámez, C., Prieto, T., & Jiménez, A. (2013). “El problema de la producción y el consumo de energía: ¿cómo es tratado en los libros de texto de Educación Secundaria?” Enseñanza de las ciencias, 31(2), 153-171.
[9] Monterrubio, M., & Ortega, T. (2011). “Diseño y aplicación de instrumentos de análisis y valoración de textos escolares de matemáticas.” PNA, 5(3), 105-127.
[10] Niss, M. y Højgaard, T. (2011). “Competencies and Mathematical Learning Ideas and inspiration for the development of mathematics teaching and learning in Denmark.” Roskilde: IMFUFA.
[11] OCDE (2006) “PISA 2006. Marco de la evaluación, conocimientos y habilidades en ciencias, matemáticas y lectura.” Madrid: Santillana.
[12] OECD (2009) PISA 2009. “Assessment framework. Key competencies in reading, mathematics and science.” Recuperated of: http://www.oecd.org/dataoecd/11/ 40/44455820.pdf
[13] OECD (2015) “PISA 2015. Draft science framework.” Recuperated of: http://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Science%20Framework%20.pdf
[14] Sánchez, G. y Valcárcel, M. V. (2000). “¿Qué tienen en cuenta los profesores cuando seleccionan el contenido de enseñanza? Cambios y dificultades tras un programa de formación.” Enseñanza de las ciencias, 18 (3), 423-437.
[15] Shield, M. J. & Dole, S. (2009). “An analysis of middle-year school mathematics textbooks.” In C. U. Hock, Wahyudi, R. P. Devadason, et al. (eds.), Proceedings of The International Conference on Science and Mathematics Education (CoSMED 2009). Penang, Malaysia.
[16] Sierpinska, A. (1994). “Understanding in Mathematics.” United Kindom: The Palmer Press.
 

Publication date: 2018/03/23
ISBN: 8862929765
Pixel - Via Luigi Lanzi 12 - 50134 Firenze (FI) - VAT IT 05118710481
    Copyright © 2025 - All rights reserved

Privacy Policy

Webmaster: Pinzani.it