The Future of Education

Digital Library Directory > New Perspectives in Science Education 9th Edition 2020
New Perspectives in Science Education 9th Edition 2020

Definition of a Classification of the Difficulties in Linear Algebra in Psychological Terms

Lekë Pepkolaj; Siditë Duraj; Dritan Gerbeti

Abstract

This article focuses on the discourse on the classification of students’ errors and mistakes in linear Algebra. It points to the significance of understanding of student learning difficulties and errors as part of human nature and as a drive to improve student learning and at the same time as crucial for the enhancement of the overall learning process. Identifying mistakes helps the teacher to find out the gaps in students’ knowledge and skills, to classify them, and to determine the proper recovery strategies. It also helps the teacher to tailor teaching taking into account students’ individual needs, their interests and abilities. The paper points to the importance of setting teaching objectives based on the individual learning needs of students and personalizing teaching and learning to ensure full engagement of students in the learning process. The purpose of identifying and classifying students errors is not to put the blame on students but to minimize and analyse the causes that lead to the students errors.

Keywords: difficulty, linear algebra, individualized learning, recovery strategies.

References:


[1] Albano, G., Pepkolaj, L. (2014). Formative Self-Assessment to Support Self-driven Mathematics Education at University level. Lecture Notes in Computer Science series, Vol. 8699, pp. 82-91, “New Horizons in Web Based Learning”, ICWL 2014 International Workshops, revised Selected Papers, Springer International Publishing.
[2] Antiseri, D. (2001). Elogio dell’errore. In (L. Binanti, a cura di) Pedagogia, epistemologia e didattica dell’errore, Rubbettino, pp. 101 – 106.
[3] Baldacci, M. (2005). Personalizzazione o individualizzazione? Erickson.
[4] Baldini, M. (2001). Prefazione. In (L. Binanti, a cura di) Pedagogia, epistemologia e didattica dell’errore, Rubbettino, pp. 7 – 12.
[5] D’Amore B.; Sbaragli S. (2005). Analisi semantica e didattica dell’idea di “misconcezione”. La matematica e la sua didattica. 2, pp. 139-163.
[6] Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Dan-ish KOM project. In Gagatsis, A. & Papastavridis, S. (eds.): 3rd Mediterranean Confer-ence on Mathematical Education 3-5 January 2003. Athens: Hellenic Mathematical So-ciety, 115-124 (2003).
[7] Pellerey, M. (2012). L’eredità  di  Luigi  Calonghi  nella  ricerca pedagogico-didattica. Retrivial from
http://www.giombattistaamenta.it/wp-content/uploads/2012/12/Pellerey-Leredita%CC%80-di-Luigi-Calonghi1.pdf
[8] Pepkolaj, L. 2015: Difficoltà in matematica: Percorsi in autoformazione in e-learning. La tesi del dottorato in matematica.  Università degli Studi di Salerno (Italy).
[9] Pesci, A. (2012). I suggerimenti della ricerca in didattica della matematica per la pratica scolastica. Appunti per il corso di Didattica della Matematica. Terza Edizione. Pavia.
[10] Zan, R. (2012). Difficoltà in matematica Osservare, interpretare, intervenire. Springer Verlag.

Publication date: 2020/03/20
ISBN: 978-88-85813-90-8
Pixel - Via Luigi Lanzi 12 - 50134 Firenze (FI) - VAT IT 05118710481
    Copyright © 2025 - All rights reserved

Privacy Policy

Webmaster: Pinzani.it