DEVELOPMENT OF VISUAL REPRESENTATION COMPETENCE

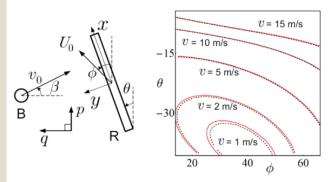
TAXONOMY FOR SCIENCE TEACHING AND LEARNING

Hye-Gyoung Yoon

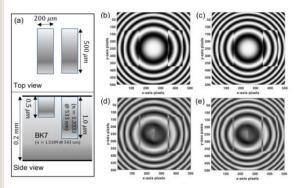
Chuncheon National University of Education, South Korea

Importance of visual representations in science

Evagorou et al. 2015



Visual reasoning in knowledge production, the example of the lines of magnetic force

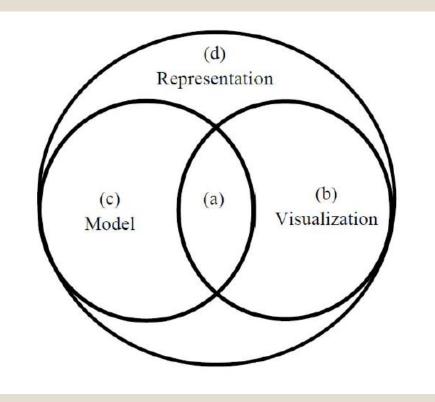

X-ray chrystallography of DNA, Use **visual representations as evidence** in the discovery of DNA [<u>New Physics: Sae Mulli</u>] 새물리 홈페이지 바로가기

[하이라이트 논문 1] <u>http://dx.doi.org/10.3938/NPSM.67.1378</u>

제목: 목표를 향해 공을 보낼 수 있는 효과적인 스윙형태 분석을 위한 테니스 공의 운동 연구 (New Physics: Sae Mulli Vol.67 No.11, pp.1378-1387) 저자: 윤선현• 소속: 전남대학교 물리학과, 광주 61186, 대한민국

[하이라이트 논문 2] <u>http://dx.doi.org/10.3938/NPSM.67.1393</u>

제목: Refractive Index Distribution Measurement of an Optical Component by Using Digital Holography (New Physics: Sae Mulli Vol.67 No.11, pp.1393-1398) 저자: Silin NA, Younghun YU*


소속: Department of Physics, Jeju National University, Jeju 63243, Korea

Highlighted articles in physics journal

Importance of visual representations in science and science education

Similar terms

- People create **representations** through their intention to have one thing stand for something else, that is, a **representation is seen as a structure that stands for something else**.
- A model in science can be developed as a representation to represent a simplification of a phenomenon, and then to be used in the inquiry to develop explanations of the phenomenon (Gilbert, Boulter, & Elmer, 2000).
- **visualization** as the **cognitive and brain processes** associated with the act of visualizing rather than as a pictorial representation, which is linked to visualizing process (Reiner, 2008).

Rundgren, S. N. C., & Yao, B. J. (2014, December). Visualization in research and science teachers' professional development. In Asia-Pacific Forum on Science Learning and Teaching (Vol. 15, No. 2, pp. 1-21). The Education University of Hong Kong, Department of Science and Environmental Studies.

Studies on visual representations in science education

Delivering the information efficiently using visual representations

- Types and use of VRs in science textbooks (Dimopoulos et al. 2003; Bungum 2008)
- Students' understanding of the given VRs (Chittleborough & Treagust, 2007; Colin, Chauvet, & Viennot, 2002; Topsakal & Oversby, 2013)

Emphasizing the students' participation in visualizing process

- Characteristics of students' generated VRs during scientific practices (Gilbert et al. 2008; Dori et al. 2003; Lehrer and Schauble 2012; Schwarz et al. 2009, Waldrip et al., 2010)
- Importance of visual representation competence as the set of scientific skills and practices (Kozma & Russel, 2005, Tippett, 2016)

How can we use VRs effectively in science classrooms?

Educational Taxonomy

- Taxonomy is used to design curriculum, set learning objectives, and conduct an assessment.
- Bloom's taxonomy (1956) \rightarrow Revised Bloom's taxonomy (Anderson et al., 2001)
- Bloom's Digital Taxonomy for teaching and learning with ICT (Churches, 2009)

	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	NOISE I TEST
Factual knowledge			Lower order→	Higher order thin	king skill		Protegranizer CREATING Tuessrar Rubric Protegranizer Wolfier Protegranizer
Conceptual knowledge	Concrete ↓						Coogle 10 x 10 Google Analyzing Dipes Cook
Procedural knowledge	Abstract knowled ge						Cooperative Cooper
Metacognitive knowledge							Werdnik Platharden werden in State and the state of the s

Purpose of the study

 Develop two dimensional VRC-T to promote the effective use of visual representations in teaching and learning science and provide a platform for systematic science education research.

		C	ognitive p	rocess of v	risual repre	sentation	
Two	_ c						
Dimensional VRC-T	sual atio						
VKC-I	f vis ente						
	e o res						
	Typ rep						

Process of the study

Literature review (The 1st Model)

- Types of visual repres entations
- Cognitive theory of vis ualization process
- Visual representation competence

Teachers' workshop (The 2nd Model)

- Teachers classify VRs in the science textbooks
- Teachers wrote LOs about VRs based on the 1st model
- Discuss problems and challenges

Survey to experts (The 3rd Model)

- Classify 16 VRs using 2nd model to analyze agreement rate betw een the researcher a nd experts
- Evaluate the appropri ateness of learning ob jectives correspondin g to each cognitive p rocess as a four-point scale

Result1: Type of visual representation

• According to their characteristic

- Simple diagrams, comprehensive diagrams, analytical diagrams, tables, maps, and timelines (Moline, 1995)
- Maps, Diagrams, Photographs, Equations, Graphs, Pictures, Chart (Ozcelik, & McDonald, 2013)
- Two-dimensional, three-dimensional / static, dynamic

According to the abstractness of object

 Macroscopic, sub-microscopic, symbolic (Bucat & Mocerino, 2009; Gilbert & Treagust, 2009; Johnstone, 1993)

According to the purpose

• Descriptive, explanative, relational (Jo et al., 2015)

Result1: Type of visual representation

A. Descriptive R

- Aa. Realistic description
- Ab. Structure/scale

B. Procedural R

Ba. Method/processBb. Change/comparison

C. Explanative R

Ca. Science conceptCb. Scientific theory/law

D. Relational R

- •Da. Graph
- Db. Organizer
- Dc. Analogy

A. Descriptive R

- Aa. Realistic description
- Ab Structure/scale/distribution

B. Procedural R

Ba. Method/processBb. Change/comparison

C. Explanative R

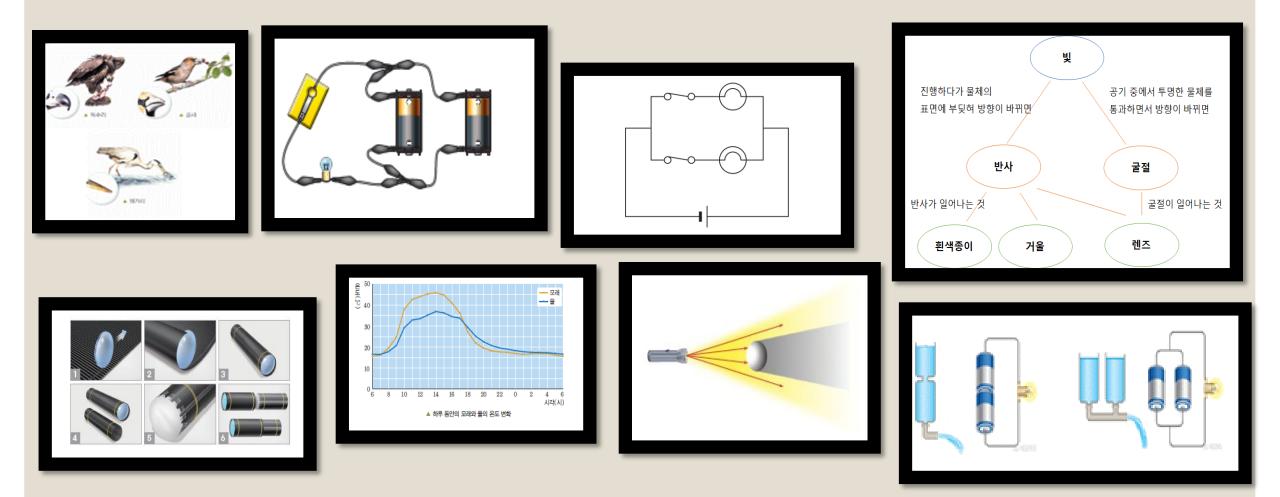
- •Ca. Science concept/science model
 - •Cb. Relationship between concepts
 - Cc. Analogy

A. Descriptive R

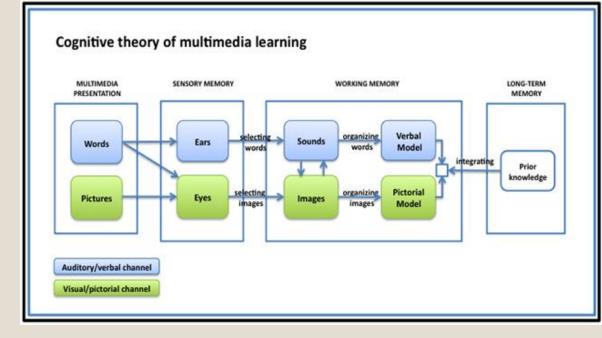
- Aa. Realistic description
- Ab. Description using symbol

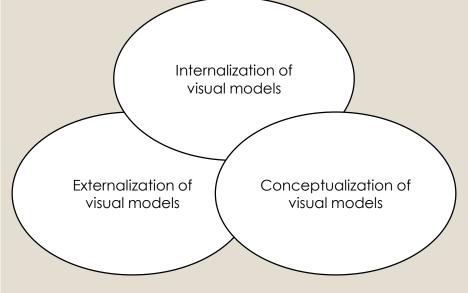
B. Procedural R

- Ba. Process of doing things
- Bb. Process of change over time


C. Explanative R

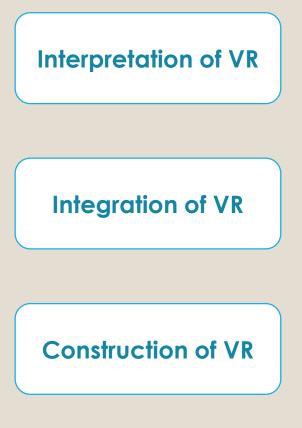
- Ca. Explanation of scientific model
- Cb. Explanation of relationships between the concepts


Result1: Type of visual representation


Category	Sub-category	Definition	Example	
A. Descriptive representation:	Aa. Realistic description	Realistic description of the things or phenomena, external features or internal structures of objects, and behaviour of plants and animals	Appearance of plants and animals, The internal structure of the bulb, cross section of plant stem etc.	
Delivering the fact by describing the things or phenomena	Ab. Description using symbols	Using symbols to describe the things or phenomena, external features or internal structures of objects, and behaviour of plants and animals	Electric circuit diagram, Rainfall bar graph, Volcano distribution map using symbols etc.	
B. Procedural representation: Showing the process of	Ba. Process of doing things	Describing a set of methods or sequences for performing a task	Procedure of making electromagnet, manual of experimental instruments etc.	
doing things or the change over time	Bb. Process of change over time	Describing time and seasonal change or movement of an object	Seasonal constellation, growth of plants and animals, graph of water temperature change over time etc.	
C. Explanative representation: explaining the cause	Ca. Explanation of the scientific model	Explaining scientific concepts or principles, hypothetical ideas in order to explain the phenomenon	Water cycle diagram, particle representation of gas volume changes etc.	
and regularity of the phenomena	Cb. Explanation of relationships between the concepts	Explaining concepts using metaphors or relationships, hierarchy and inclusion between concepts	Water flow analogy of electric circuit, plant classification diagram, concept map of light properties etc.	

Examples of VRs in Science Textbooks

Result2: Cognitive process of visual representation



Mayer (2000, 2003): cognitive theory of multimedia learning

The overlapping stages of the cognitive process of visualization (Redrawn from Mnuguni (2014))

Key references about representational competence elements

Study1	McKenzie & Padilla (1986)	'The test of graphing in science (TOGS)'
Study2	Postigo and Pozo (2001, 2004)	'Graphicacy'
Study3	diSessa & Sherin (2000)	'Meta-Representational competence'
Study4	Kozma & Russell (2005)	'Representational competence level'
Study5	Yoon et al. (2016), Jo et al. (2017), Cho et al. (2017)	'Visual representation competence'

Result2: Cognitive process of visual representation

1. Interpretation of VR

- •1.1 Interpreting surface information
- 1.2 Interpreting in-depth information
- 1.3 Interpreting conceptual information

2. Integration of VR

- •2.1 Transforming
- •2.2 Evaluating

3. Construction of VR

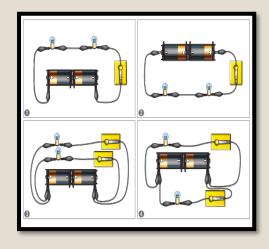
- 3.1 Constructing surface information
- 3.2 Constructing in-depth information
- 3.3 Constructing conceptual information

1. Interpretation of VR

- 1.1 Interpreting Explicit Information
- 1.2 Interpreting conceptual information

2. Integration of VR

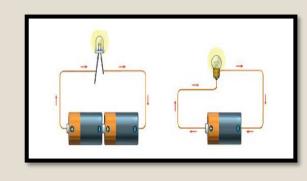
- 2.1 Transforming (across various forms a nd situations)
- •2.2 Evaluating the appropriateness


3. Construction of VR

- 3.1 Constructing representations based o n senses, rules, and information
- 3.2 Constructing representations based o n reasoning

Result2: Cognitive process of visual representation

Category	Sub-category	Key predicates			
1. Interpretation of VR:	1.1 Interpreting Explicit Information	Identifying symbol or valueReading symbol or value			
Interpreting the information and meaning presented in the given visual representation.	1.2 Interpreting conceptual information	 Interpolating/Extrapolating (from a graph) Interpreting the meaning by making inference such as predicting, generalizing, and concluding Interpreting through scientific concepts and terms 			
2. Integration of VR: Evaluating or transforming	2.1. Transforming (across various forms and situations)	 Transforming the given representation into a different form Applying the given representation to similar situation Matching between different forms of representations showing the same information 			
the given visual representations by linking them with prior knowledge, concepts, and experiences	2.2. Evaluating the appropriateness	 Selecting the proper one Justifying the use of the specific representation Criticizing the inadequate expression or use of the representation Understanding that scientific representation is not always the mirror of reality. (nature of representation) 			
3. Construction of VR: Constructing visual	3.1 Constructing representations based on senses, rules, and information	 Drawing the features of observed phenomena or objects Making a map of location or distribution based on the given information Using the scientific symbols according to the rules (e.g. arrow indicating force) 			
representations to show the observed features and scientific ideas	3.2 Constructing representations based on reasoning	 Illustrating scientific concept or principle Drawing a concept map or hierarchical chart to present the relations between concepts Drawing/Making a visual model to present one's scientific idea (hypothesis) and use it to explain and to predict the phenomenon 			


Examples of learning objectives

- 1.1 Interpreting Explicit Information
- 1.2 Interpreting conceptual information
- 2.1. Transforming (across various forms and situations)
- 2.2. Evaluating the appropriateness
- 3.1 Constructing representations based on senses, rules, and information
- 3.2 Constructing representations based on reasoning

- Students can identify the light bulb, the battery, and the switch In the given figure.
 - Students can group the given figures according to the connection method
- Students can connect the light bulb, the battery, and the switch according to the given figure.
- Students can tell what is convenient when batteries, switches, and bulbs are expressed with simple symbols.
- Students can draw circuit when they observe an electric circuit with a light bulb, battery, and switch connected.
- Students can draw serial and parallel connection of bulbs when they listen to / read scientific explanation.
- Students can illustrate all the possible ways of connection how to light up two bulbs.

Examples of learning objectives

- 1.1 Interpreting Explicit Information
- 1.2 Interpreting conceptual information
- 2.1. Transforming (across various forms and situations)
- 2.2. Evaluating the appropriateness
- 3.1 Constructing representations based on senses, rules, and information
- 3.2 Constructing representations based on reasoning

- Students can tell that the arrow indicates the direction of the current.
- Students can tell that the current commonly flows from positive to negative pole of battery in the given figures.
- Students can draw arrows indicating current when the batteries are reoriented or additional bulbs are connected.
- Students can point out the wrong direction of the current when they look at various diagrams showing current direction.
- Students can illustrate current flows from positive to negative pole of battery when they listen to / read scientific explanation.
- Students can illustrate how current should flow for home appliances (such as an electric rice cooker) to work.

Expected use of VRC-T

• Practical use

- helpful to utilize the visual representations more actively/effectively in teaching and learning science
- assess students' visual representation competence and devise appropriate educational activities for it

• Further studies

- hierarchy in cognitive processes
- the validity for secondary science education needs to be explored and confirmed

Thank you!

Hye-Gyoung Yoon yoonhk@cnue.ac.kr