Teaching entropy at bachelor level in a conceptual change perspective

Vincent Natalis *Bernard Leyh, Loïc Quinton*ULiège, Belgium

New Perspectives in Science Education Conference 2021

What is entropy?

Fundamental concept in thermodynamics, the study of heat, temperature, and work.

What is entropy?

Fundamental concept in thermodynamics, the study of heat, temperature, and work.

What is entropy?

Fundamental concept in thermodynamics, the study of heat,

temperature, and work.

Energy spread, dispersal Energy quality

<u>Important features</u>

- Entropy is a property of a system
- The entropy of the universe only ever increases
- Entropy is linked to the arrow of time

Entropy is a key notion that highlights the obstacles to teaching chemistry at bachelor level

• Macroscopic properties emergence from microscopic models

Conflicts and conciliations between two historical models

Emergence is not always intuitive!

Entropy is Disorder Disorder in gas > Disorder in liquid > Disorder in solid

$$S_{gaz} > S_{liquid} > S_{solid}$$

Emergence is not always intuitive!

Disorder in gas > Disorder in liquid > Disorder in solid

Entropy is Disorder

 $S_{gaz} > S_{liquid} > S_{solid}$

1 mole He 1 mole Ne 1 mole Ar

1 mole Kr

Entropy is Disorder

$$S_{He} = S_{Ne} = S_{Ar} = S_{Kr}$$

Emergence is not always intuitive!

Carnot (1823)

Clausius (1865)

Clausius (1876)

Defines a statistical origin to entropy

<u>Creation of the</u> <u>« disorder » metaphor</u>

Macroscopic model

Does not need atoms!

Microscopic model

Particles statistics

Pedagogical framework: conceptual change

Misconception

"Any reasoning mobilized by the student which is not in accordance with the scientifically accepted concept"

Naïve, incomplete, ou plane false

Conceptual change theory

A framework for observing and analyzing the ways in which students' conceptions coexist and evolve

Research questions

- By which answers and erroneous justifications do the misconceptions of undergraduate students in higher education about entropy and the second law of thermodynamics manifest themselves in multiple choice tests?
- How are these misconceptions influenced by a general thermodynamics course based on the macroscopic model?

Method

O2 Le dioxyde de carbone (CO ₂) et le propane (C ₃ H ₈) ont la même masse moléculaire. Supposons deux enceintes fermées, indéformables et identiques. L'une a							
même t	01 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
sont des	conséq libérée	Lentropie, c est (piusieurs reponses possibles) :					
	et pou		Une températ	ure			
	d'entro		Une énergie				
	pure.		Une grandeur	thermodynamic	lue		
	☐ Une fonction d'état						
	☐ Une vitesse de réaction						
	☐ Une propriété d'un système						
	- 1	☐ Un processus					
	- 1	☐ Autre:					
<u>Ju</u>	Q2 Lorsqu'une tasse se brise en tombant sur le sol, on peut dire que : L'entropie du système « tasse » augmente. L'entropie du système « tasse » iminue. L'entropie du système « tasse » reste constante. Le système « tasse » ne possède pas d'entropie. Q3 Laquelle (lesquelles) des variations d'entropie mentionnées dans le tablea ci-dessous est (sont) toujours positive(s) lorsqu'un processus spontané s déroule dans un système (a) isolé ? (b) fermé ? Indiquez par une croix (plusieurs réponses possibles).						
				ΔS _{système}	ΔS _{environnement}	ΔS _{univers} = environmement + système	
		(a) Sy	ystème isolé				
		(b) S ₁	ystème fermé				

Test (and online test)

- Groups:
 - First-year undergraduates : pharmacists, chemists, geologists
 - > Second-year undergraduates : chemical engineers
 - **≻**Experts
- 11 questions, 6 of them open to justification
- Questions have been designed to make misconceptions arise
- One test before, one test after the entropy lesson

Results from the definition question

According to you, entropy is (multiples answers possible):

- A temperature
- A form of energy
- A thermodynamic quantity
- A state function
- A reaction rate
- A system property
- A process
- Other:.....

Results from the definition question

- Major energy-entropy confusion (48%)
- Major ignorance of properties of entropy
 - Property of a system
 - State function

=> The macroscopic approach insists on *process*, not *properties* (ΔS, not S)

Results from the definition question

Improvements

Energy item

$$\rightarrow$$
 dS = $\delta Q_{reversible} / T$?

> SD interviews

- Thermodynamic quantity
- State function
 - > Key feature in the macro model

Worsening
 system property
 ➤ ΔS, not S

Conclusion

- Macroscopic model >< microscopic model
- A macroscopic model-based course doesn't necessarily improve misconceptions
- → Create a new joint explanation of the disorder metaphor from the two methods
- → Use this new explanation in a novel educationnal environnement (lab, simulation)

Thanks!