

n

A preliminary study on perceptions of critical thinking skills in undergraduate and graduate engineers

International Conference

María José Cano-Iglesias¹, Antonio Joaquín Franco-Mariscal²

¹University of Málaga, Industrial Engineering School, Málaga, Spain ²University of Málaga, Science Education, Málaga, Spain

Abstract

Nowadays, it is considered essential to have a society integrated by reflective, responsible citizens capable of making reasoned decisions on different issues related to science and technology [1]. In the case of engineering students, the development of these critical thinking skills is significant since any engineer must be able to persuade the interlocutor about a problem or its solution [2], as well as to overcome one of the main obstacles found in the literature, which is the difficulty in communication skills that engineers encounter when expressing formal reasoning [3]. This paper aims to compare the perceptions of critical thinking skills presented by a sample of students in the second year of the Industrial Technologies Engineering Degree at the University of Malaga (Spain) (N=26) with those of graduated engineers who are continuing their training in a Master's Degree (N=19). The survey proposed by Santiuste et al. [4] to assess the development of critical thinking skills was used as a data collection instrument. This survey consists of 30 items grouped into two dimensions (substantive, focused on the person's points of view, and dialogical, the confrontation between two or more people). Three categories (reading, expressing in writing, and listening and expressing orally) are established within each dimension. The results obtained through the Mann-Whitney U test revealed statistically significant differences in the reading category of the substantive dimension. However, differences were also detected in some items of the other two categories and all cases favouring graduate engineers. On the other hand, in no case were differences detected in the dialogical dimension. These results indicate that, after undergraduate training, engineers are autonomously able to develop critical thinking skills in the substantive dimension. However, more specific training is required for the dialogical dimension that should be promoted from the engineering degrees, which is necessary for their professional activity.

Keywords: Critical thinking, Engineering students, Higher Education.

1. Introduction

The literature on science and technology learning suggests that argumentation and reasoned decision-making skills help university students improve their scientific reasoning and promote their conceptual understanding [5-7] since they need to justify conclusions, which can be challenged by other ideas. Moreover, by contrasting ideas, students have the opportunity to evaluate their conceptions and learn new ones, thus favouring the construction and assimilation of new concepts [8]. These skills, among others, are part of a more complex concept called critical thinking [9]. Thus, Lipman [10] considers that reading comprehension, written expression, and listening and speaking are basic critical thinking skills that can be developed at any educational level. For Santiuste et al. [4], critical thinking has two dimensions: the substantive dimension, which includes all the acts performed by citizens to offer reasons and evidence to support their point of view, and the dialogic dimension, which includes those acts that focus on analysing and integrating points of view that are opposed or different from their own, where they must also develop reasoned arguments that allow them to respond to refutations and to clarify the different perspectives.

In the case of engineering students, their academic training has traditionally focused on the transmission of knowledge [11]. However, the current trend tends towards an integral education, understanding engineering as the intersection of the technical and social dimensions, in which critical thinking acquires a concrete and particular meaning and must be promoted [12].

Thus, promoting critical thinking skills in engineers would help improve their oral communication skills, detected as an obstacle in the literature [3]. Due to its importance, this paper aims to conduct a

preliminary study on the perceptions of critical thinking skills in Spanish undergraduate and graduate engineers.

International Conference

2. Method

The participants in this study were 45 students from the University of Malaga (Spain) belonging to two different samples: 26 undergraduate engineers (UGE) in the second year of the Industrial Technologies Engineering Degree (20 men and 6 women), and 19 graduate engineers (GE) who are continuing their training in a Master's Degree (12 men and 7 women). The study was conducted during the academic year 2021/22.

The participants' perceptions of critical thinking skills were measured using the CPC2 survey by Santiuste et al. [4]. This survey addresses the dimensions of substantive (focusing on one's views) and dialogical (the confrontation between two or more people). Three categories related to the reading, expressing writing, and listening and expressing orally skills are established for each dimension. The survey comprises 30 items (table 1) presented on a Likert scale of 1 to 5 points (1, strongly disagree and 5, strongly agree).

Several statistical analyses were performed using SPSS 23.0 to compare the perceptions expressed between UGE and GE. The Mann-Whitney U test was used to study statistically significant differences between UGE and GE for each item, category and dimension. The means of the items comprising each category were calculated for each student to quantify each category. The quantification of each dimension was carried out similarly. The effect size of the Mann–Whitney U test was calculated using the equation $r = Z/\sqrt{N}$, where N is the number of students and Z is the value of the statistical test. As for the value of r calculated in absolute terms: 0.1 is considered a small effect, 0.3 a medium effect and 0.5 a large effect. We also analysed whether there were significant differences by gender in each group (UGE or GE).

3. Results and Discussion

Table 1 displays the statistical analysis results for each item of the survey, while table 2 shows the results by categories and dimensions.

UGE Media	GE Media	Z	p	In favour	Effect Size (r)
		Substantive Dim	ension: Reading		
1. When I read so	mething I disagree	with, I look for rea	asons contrary to t	hose stated in the	text.
3.654	3.579	-0.498	0.619	-	1
2. I can differentia	ate between facts an	nd opinions in the	texts I read.		
3.808	4.316	-2.331	0.020	GE	0.347
3. When I read a	text, I clearly identify	y the relevant info	rmation.		
3.539	4.263	-3.252	0.001	GE	0.485
4. When I read a	text, I clearly identify	y the irrelevant inf	ormation.		
3.808	4.053	-1.003	0.316		
5. When I read an	argumentative text	, I clearly identify	the arguments that	at corroborate or re	fute a thesis.
3.692	4.158	-2.322	0.020	GE	0.346
6. I can draw fund	amental conclusion	is from the texts I	read.		
3.769	4.263	-3.123	0.002	GE	0.466
7. When an author	or presents several p	oossible solutions	to a problem, I as	sess the usefulnes	s of each of them.
3.846	4.105	-1.209	0.227	-	-
8. When an author possible to impler	or presents several ment.	possible solutions	to a problem, I a	ssess whether all o	of them are equally
3.577	3.895	-1.460	0.144		-
9. When an author all the conditions	or presents several necessary to put the	possible solutions em into practice.	to a problem, I a	ssess whether he	has also presented
3.385	3.579	-0.739	0.460		
10. When I read solutions, explain	a text, I know whe facts, etc.	ther the author is	s trying to give ar	n opinion, present	a problem and its
3.885	4.000	-0.426	0.670		-

Table 1. Mann-Whitney U test for each item of the survey [4] for UGE and GE.

Table 1. Continuation

International Conference NEW PERSPECTIVES in SCIENCE EDUCATIO

UGE Media	GE Media	Z	р	In favour	Effect Size (r)
		Substantive Din	nension: Reading]	2
11. I verify the in	iternal logic of the t	exts I read.			
3.423	3.895	-2.418	0.016	GE	0.360
12. I ask myself	if the texts I read s	ay something that is	s valid today.		1
3.577	3.684	-0.476	0.634		
 When I read is right. 	something I disagr	ee with, I consider t	hat I may be wron	g and that perhaps	it is the author who
3.577	3.842	-0.916	0.360		-
14. When I read	an opinion or thesi	s, I do not take side	es until I have suff	icient evidence or n	easons to justify it.
3.808	3.684	-0.732	0.464	a anna 19 anna	
15. When I read	an opinion that ag	rees with my point	of view, I side wit	h it without conside	ring other possible
3 154	2 805	-1 120	0.259		
16 When I read	the interpretation of	-1.120	alternative intern	etatione aviet	
2 760	2 727	0 112	0.011	etationa exist.	1 8
3.709	3.131 Sub	-V.112	U.911	writing	
17 Mhon Lucito	the conclusions of	a opport L clearly in	in Expressing in	thom	
17. When I white	a coe	a paper, i cleany ju	usury each one of	uleni.	1
10 Million I hours	0.020	-0.909	U.330	ar and analast it	
16. when I have	to argue in writing	about an issue, i g	ive reasons both t	or and against it.	0.000
3.902	3.4/4	-1.900	0.050	UGE	0.292
19. When I write	about a subject, 1	clearly distinguish b	etween facts and	opinions.	1
4.077	4.000	-0.026	0.979		-
20. When I look	for information to w	rite a paper, I judge	e whether the sou	rces I use are reliat	ble.
4.000	4.053	-0.121	0.904		1
21. When a prol	blem has several p	ossible solutions, I	can write them d	lown, specifying the	air advantages and
disadvantages.	1				
3.308	4.000	-3.214	0.001	GE	0.479
22. When I write	an idea that is not	my own, I mention	the sources from	which it comes.	
3.962	4.474	-2.031	0.042	GE	0.303
	Dia	logical Dimension	: Expressing in v	writing	
 In my writter sources. 	n works the main t	nesis on the subjec	t, I present altern	ative opinions from	other authors and
3,385	3,421	-0.073	0.942		
24. When writing	a paper. I present	alternative interpre	tations of the san	he fact whenever po	ossible.
3,500	3.263	-1.285	0.199		-
	Substanti	ve Dimension: Lis	tening and expre	essing orally	
25.1 know how t	o clearly express n	ny point of view in d	lebates.		
3.462	3.632	-0.729	0.466		
26 In debates I	know how to justify	why I consider an	opinion acceptab	le or well-founded	
3 769	3 421	-1 183	0.237		
27 When Lorally	nresent an idea th	nat is not mine. I me	ention the source t	from which it comes	
3.538	3.684	-0.362	0.717	-	1
 When a prol disadvantages. 	blem has several s	olutions, I am able	to present them o	orally, specifying the	eir advantages and
3.423	3,789	-1.962	0.050	GE	0.293
	Dialogic	al Dimension: List	ening and expres	ssing orally	
29. In debates 1	look for alternative	ideas to those alre	adv expressed		
3.885	3.632	-1.208	0.227		
30. When I parti	cipate in a debate	l ask myself if alten	native interpretation	ons of the same fac	1
3.731	3.684	-0.138	0.891		1 2

Table 2. Mann-Whitney U test for each category and dimension of the CPC2 survey

	Substantive Dimension			Dialogical Dimension				
	Reading	Expressing in Writing	Listening and Expressing Orally	Total Dimension	Reading	Expressing in Writing	Listening and Expressing Orally	Total Dimension
UGE Media	3.667	3.853	3.548	3.689	3.577	3.442	3.808	3.609
GE Media	3.982	3.921	3.632	3.845	3.539	3.342	3.658	3.513
Z	-2.367	-0.788	-0.348	-2.060	-0.248	-0.565	-0.668	-1.030
P	0.018	0.431	0.728	0.039	0.804	0.572	0.504	0.303
r	0.353	144	0 04-5 L	0.307		1. 20		20 E

An overall view of the results shows that all the critical thinking skills proposed are well perceived by UGE and GE, with practically all the items presenting a mean higher than 3. Generally, it can be seen that the GE presented higher perceptions in the reading, and listening and expressing orally skills of the substantive dimension, while in the remaining cases, the UGE had higher perceptions.

To facilitate the discussion, Table 3 summarizes the items in which statistically significant differences were found and those in which they were not found, indicating in the first case in favour of which group of students the differences were in.

10

International Conference W PERSPECTIVES CLENCE EDUCATION

Table 3. Statistically significa	ant differences by items	between UGE and GE
----------------------------------	--------------------------	--------------------

Differences in fevour	Su	lostantive Dimensi	on	Dialogical Dimension			
	Reading	Expressing in Writing	Listening and Expressing Orally	Reading	Expressing in Writing	Listening and Expressing Orally	
UGE		18		\$3) (44	8 8 8	() () ()	
GE	2,3,5,6,11	21,22	28	1 2	S		
Without Differences	1,4,7,8,9,10, 12	17,19,2.0	25,27,27	13,14,15,16	23,24	29,30	

As can be seen (Table 3), the Mann-Whitney U test detects statistically significant differences in 9 items between UGE and GE with a medium-large effect (Table 1). It is striking that all the differences are found in the substantive dimension and all, except item 18, favouring the GE. Within this dimension, the majority of items are in the reading category. These results reveal UGE's perception of their critical thinking skills as individuals (substantive dimension) is significantly lower than that of the GE, and it is in reading where the latter is more comfortable. It may be due to the security given to the surveyed by the scientific-technical knowledge that they have acquired during the degree, as well as training in the search for and analysis of information during that time. Thus, item 22 on citing sources when presenting the ideas of others is the item with the highest mean (4.474) for the GE. The training of students in this task throughout the courses and the development of their final thesis could be the reason.

The finding that none of the items of the dialogic dimension shows statistically significant differences may be due, according to the participants' perception, to the fact that during the development of the degree and in subsequent years, there has been no improvement in their skills related to the confrontation between points of view of two or more people. The low number of tasks performed in engineering degrees to develop critical thinking skills [12] may have influenced.

Finally, the statistical analysis by gender showed no significant differences in items, categories or dimensions.

4. Conclusions

This work has compared the perception of critical thinking skills of UGE and GE, focusing on the substantive and dialogical dimensions. The results obtained reveal two ideas. On the one hand, GE can progress autonomously in developing critical thinking skills in the substantive dimension. But, on the other hand, the different Engineering Degrees should encourage the use of activities that favour the development of skills related to both dimensions, especially in the dialogical dimension. Specifically, activities related to the critical reading of information, knowing how to express oneself adequately in writing, or knowing how to listen and express oneself orally, which, on most occasions, are understood as activities of linguistic degrees and are ignored in scientific careers.

As a future line of research, we intend to develop a training programme in scientific argumentation for engineers that includes this type of activities. Among them, we intend to encourage the development of argumentation through classroom debates.

5. Acknowledgements

This work is part of the R&D&I project of the Spanish National Plan, reference PID2019-105765GA-100, entitled "Citizens with critical thinking: A challenge for teachers in science education", financed by the Spanish Ministry of Science and Innovation in the 2019 call.

International Conference NEW PERSPECTIVES In SCIENCE EDUCATIO

References

- [1] Osborne, J. (2014). Teaching critical thinking. New directions in science education? *School Science Review*, 352, 53-62.
- [2] Jonassen, D.H. & Kim, B. (2010). Arguing to learn and learning to argue design justifications and guidelines. *Educational Technology Research and Development*, *58*, 439-457.
- [3] Escudeiro, N., Barata, A. & Lobo, C. (2011). Enhancing students teamwork and communication skills in international settings. *Proceedings of 2011 International Conference on Information Technology Based Higher Education and Training (ITHET 2011)* (pp. 57-64). Turkey: Institute of Electrical and Electronics Engineers.
- [4] Santiuste, B. (Coord.), Ayala, C., Barriguete, C., García, E., Gonzales, J., Rossignoli, J., Toledo, E. (2001). *El pensamiento crítico en la práctica educativa*. Madrid: Fugaz.
- [5] Bogar, Y. (2019). Synthesis study on argumentation in science education. *International Education Studies*, *12*(9), 1-14.
- [6] Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in Classrooms. *Science Education*, 84, 287-312.
- [7] Gaigher, E., Rogan, J.M. & Braun, M.W.H. (2007). Exploring the development of conceptual understanding through structured problem-solving in Physics. *International Journal of Science Education*, 29(9), 1089-1110.
- [8] Benegas, J. (2013). *El aprendizaje activo de la Física Básica Universitaria*. Santiago de Compostela: Andavira.
- [9] Vieira, R.M. & Tenreiro-Vieira, C. (2016). Fostering scientific literacy and critical thinking in elementary science education. *International Journal of Science and Mathematics Education*, *14*, 659-680.
- [10] Lipman, M. (1997). Pensamiento complejo y educación. Madrid. Ediciones de la Torre.
- [11] Caro, S. & Reyes, J. (2003). Prácticas docentes que promueven el aprendizaje activo en ingeniería civil. *Revista de Ingeniería*, *18*, 48-55.
- [12] Mejía, A. (2009). Tres esferas de acción del pensamiento crítico en ingeniería. *Revista Iberoamericana de Educación*, 49(3), 1-9.