Learning Lessons: Differences in Student Performance in Analytical Problens in Remote Learning vs In-person Learning of a Biochemistry Course

HARSHA RAJAPAKSE,PHD MEDGAR EVERS COLLEGE? UNY, NY, USA

MARCH 2022

Black or African American

영ㅇㅇㅇㅇ

Biochemistry
 CHM341/ CHML341

Offered every semester, 35-40 students per semester

This course concerning the chemical characteristics of living matter.

Covered topics: General concepts of the cell, 8 biomolecules, carbohydrates, amino acids, peptides, protein structure and function, lipids, enzymes, nucleic acids, cellular mechanisms.
6. Laboratory studies include modern experimental and research techniques in Biochemistry

Research Question?

- Does student performance in answering analytical questions get affected by instructional modality?
- Compare in-person vs online

Study sample:

- Total of 205 participants; 97 in-person students (Fall 2018, Spring 2019 and Fall 2019) and 108 online students (Fall 2020, Spring 2021, and Fall 2021), who completed the Biochemistry (CHM341)
- Three mid-semester exams, and the final exam
- 22372 in-person responses and 13223 online responses were analyzed.
- The normalized score of the analytical problems and the non-analytical problems of the participants from in-person instruction and online instruction served as the primary comparative factor in assessing performance differences between online and in-person students.

Data
 collection and processing

Student performance was quantified and compared in in-person and online modalities based on students' normalized average score per analytical question and normalized average score per analytical question.

Midterms and final exam multiple choice question scores were recorded

Answer choices with zero STD was eliminated (includes zero or full points for the entire class)

Questions were manually sorted as analytical and nonanalytical

Raw scores were calculated by dividing sum of the scores received in an exam by number of questions

Normalized scores for a given question type in an exam was calculated by dividing raw score for the category by raw score per question

Statistical

analysis

Conditions and assumptions:

Every student was given the same opportunity to learn,
\square All sections of the course were taught by a full-time biochemistry professor at Medgar Evers College.
\square The same number of contact hours and office hours
Textbook learning, open educational resources (OER), PowerPoint notes, lectures, class discussions, and assessment tasks to engage students in the learning process in both modalities.
\square No special preferences or weights were given to students based upon gender or rank.
\square Each student's separate answer choices were considered a single, discrete entity or statistic.
\square This study did not differentiate between male and female students, part-time and fulltime students or non-transfer and transfer students.

Cont.....Conditions and assumptions:

Normalizing the scores to their own general performance eliminate any conditional differences,
\square Possible differences due to other variables were minimized using normalizing.
Such as, increased stress due to financial problems, limited access to technology, lack of technical knowledge, dealing with family responsibilities
The two modalities used different criteria for test taking
Online students had access to more resources than in-person students. In-person students were actively proctored
Some students received extra attempts to make up exams due to unexpected technical difficulties (ex: internet re-set)

Analytical questions......?

Can you answer that question directly by what is written or mentioned in the lecture, or can be answered by a web search? \rightarrow non-analytical question

Analytical questions

Which one of the following sequences result three fragments upon treatment with
Chymotrypsin?
I. Tyr-Phe-Met-Lys-Val
II. Phe-Met-Lys-Val-Tyr
III. Met-Lys-Val-Tyr-Phe
a. I only
b. II only
c. I and II only
d. II and III only

Which two amino acids could participate in $\mathrm{H}-$ bonding via R groups within a tertiary structure of a protein?
a. Val and Lys
b. Tyr and Thr
c. Leu and Asp
d. Met and Arg

Carbonic anhydrase has two substrates, carbon dioxide and bicarbonate, which are both converted to carbonic acid. Kinetic data for each is given below. While determining the kinetics of $\mathrm{HCO}_{3}{ }^{-}$as a substrate, how would the addition of CO_{2} effect the reaction if the rate were measured by the disappearance of bicarbonate?

Substrate	$\mathrm{Km}(\mathrm{mM})$	$\mathrm{Kcat}(\mathrm{sec}-1)$	$\mathrm{Kcat} / \mathrm{Km}(\mathrm{m} \mathrm{M}-1 \mathrm{sec}-1)$
CO_{2}	12	1×10^{6}	8.3×10^{4}
$\mathrm{HCO}_{3}{ }^{-}$	26	4×10^{5}	1.5×10^{4}

a. CO_{2} would increase the activity of the enzyme
b. CO_{2} would cause an apparent decrease in the Km for HCO_{3}
c. CO_{2} would act as a noncompetitive inhibitor
d. CO_{2} would act as a competitive inhibitor

Buffering capacity refers to,
a. the effectiveness of commercial antacids
b. the extent to which a buffer solution can counteract the effect of added acid or baṣe
c. the pH of a buffer solution
d. the molecular weight of the substance used as a buffer

Most of the protein synthesis occurs in the
a. Nucleolus
b. mitochondria
c. cytoplasm
d. smooth endoplasmic reticulum

A transaldolase is an enzyme that catalyzes:
a. transfers of three-carbon units from a ketose to an aldose
b. isomerization of ketoses into aldoses such as the conversion of ribưlose-5-phosphate to ribose-5-phosphate
c. epimerization of ketoses such as the conversion of xylulose-5-phosphate into ribulose-5-phosphate
d. TPP-dependent transfer of 2-carbon units to the recipient aldose

Online students earned higher overall scores

> Unnormalized scores demonstrate a significantly higher score per problem in online education compared to inperson $[\mathrm{t}(22)=2.07, \mathrm{p}<0.05]$
$>$ No significant difference in raw average scores of analytical questions and non-analytical questions in inperson modality
$>$ There is a significant difference in raw average scores of analytical questions and non-analytical questions in inperson modality

Raw average score per problem

-Per problem
■ Non-analytical question

- Analytical questions

There is a significant difference between normalized average scores of analytical questions and non-analytical questions in online students

The independent sample t-test showed no significant difference in average student scores between analytical questions and non-analytical questions in in-person modality $[\mathrm{t}(22)=2.07, \mathrm{p}=0.7]$.

The independent sample t-test showed a significant difference in average student scores between analytical questions and non-analytical questions in online modality $[\mathrm{t}(20)=2.09, \mathrm{p}<0.001]$.

	in-person analytical	in-person non-analytical	online analytical	online non-analytical
Mean	0.999	1.002	0.705	1.109
Variance	0.001	$2.180 \mathrm{E}-04$	0.043	0.004
Observations	12	12	11	11
df	22		20	
$\mathrm{P}(\mathrm{T}<=\mathrm{t})$ two-tail	0.732	Non-significant	$* 5.008 \mathrm{E}-06$	$*$ Significant
t Critical two-tail	2.074		2.086	

In-person students showed an excellent performance correlation between their scores of analytical and non-analytical questions
in-person non-analytical (raw) score Line Fit Plot

in-person non-analytical (raw) score Residual Plot

In-person students showed an excellent performance correlation between their scores of analytical and non-analytical questions

Regression Statistics		Pearson Correlation factor $=0.94$			\cdots
Multiple R	0.94				
R Square	0.88				
Adjusted R Square	0.87				
Standard Error	0.06				
Observations	12.00				
ANOVA					
	$d f$	SS	MS	F	Significance F
Regression	1.00	0.29	0.29	75.74	5.5896E-06
Residual	10.00	0.04	0.00		
Total	11.00	0.33			

Online students showed a poor performance correlation between their scores of analytical and non-analytical questions
online non-analytical (raw) score Line Fit Plot

online non-analytical (raw) score
Residual Plot

online non-analytical (raw) score

Normal Probability Plot

Online students showed a poor performance correlation between their scores of analytical and non-analytical questions

Final grade distribution was significantly different in two modalities

	\% students with the grade	
	in-person	online
A+	1.43	3.37
A	10.00	5.62
A-	10.00	13.48
B+	5.71	6.74
B	8.57	20.22
B-	10.00	10.11
C+	10.00	10.11
C	15.71	23.60
F	5.71	3.37
W	20.00	0.00
WU	2.86	3.37

*Two grade distributions are significantly different , $x 2=29.56, d f=10, p=0.001$

Online and in-person student composition by academic level was comparable

In-person Student Composition by Academic Level

Online Student Composition by Academic Level


```
■ 2nd Degree Count
■ Lower JR Count
    Coun
    _Upper JR Count
```

\% In-person lower and upper junior, senior and second degree combined $=81.44 \%$ $\%$ online lower and upper junior, senior and second degree combined $=83.33 \%$

The two percentages were not significantly different. (Probability attached to the difference in percentages, $z=0.355,2$-sided $\mathrm{P}=0.76$)

Student participation followed the

 same pattern in both online and inperson, but the number of students participated were significantly different- The pattern of student participation by week was not significantly different ($\chi 2=11.07, d f=14, p=0.68$)
- The number of students participated is significantly different (t (449) , $p=1.17^{*} 10^{-10}$)

Student Participation

Conclusions:

- Does student performance in answering analytical questions get affected by instructional modality?

There is a significant difference between normalized average scores of analytical questions and non-analytical questions in online students
The independent sample t-test showed a significant difference in average student scores between analytical questions and non-analytical questions $[\mathrm{t}(20)=2.09, \mathrm{p}<0.001]$ while there was no significant difference in average student scores between analytical questions and non-analytical questions $[t(22)$ $=2.07, \mathrm{p}=0.7]$.
In-person students showed an excellent performance correlation between their scores of analytical and nonanalytical questions
Online students showed a poor performance correlation between their scores of analytical and non-analytical questions
Final grade distribution was significantly different in two modalities

Limitations:

The assumptions are not 100\% true
This study investigated the differences in students average scores for analytical questions and non-analytical questions. What about cheating while no proctoring the exams?

The study was done using Biochemistry CHM341 data only and this could preclude the generalization of our results.

Subsequent studies should include students enrolled in multiple courses and universities to achieve an accurate representation.

Thank you!

家出in Science - - Education

Acknowledgements :

The department of Chemistry and Environmental Science, Medgar Evers College, NY,USA

All the participants in the study who are my former students

