Empowering Physical Sciences Teachers to Introduce a STEAM Approach: A Path to Active Teaching and Critical Learning

NWU[®]

Promise Mafokwane, Neal T Petersen & Paul N Iwuanyanwu

Unit For Self-Directed Learning, Faculty Education North-West University SA

NPSE

20 March 2025

Background: Physical Sciences teaching

Reality in most Physical Sciences classrooms

- Many Physical Sciences teachers use predominantly transmission mode teaching methods
- Tend to adhere to Gibbon's Mode 1 knowledge production:

- Traditional discipline-based knowledge (cognitive domain)
- There is usually no connection to the real-world experiences of learners
- Leading to a neglect of the affective domain

Background: Physical Sciences teaching (Reality in most Physical Sciences cont.) Practical work (addressing the psychomotor domain) focus on aspects of the NOS

- Science is
 - Empirical,
 - Tentative
 - Theory-driven
 - Creativity
 - subjective
 - Social dimension of science
 - Social and cultural embeddedness of science

Current **focus** in most science classrooms

Tenets usually not attended to in school science classrooms

NOS (Abd-El-Khalick, Bell and Lederman (1998) Recognise the empirical nature of science, but also **Creative**, SUBJECTIVE AND SOCIALLY AND CULTURALLY constructed

Therefore a need FOR

- Gibbon's mode 2 knowledge production
 - Epistemological diversity in STEM TO

Critical Learning to identify pseudoscience and enhance scientific literacy (skills 4IR)

Background: Physical Sciences teaching (cont.)

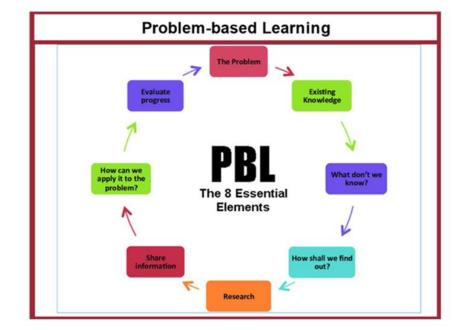
What should it be?

- Gibbon's mode 2 knowledge should be emphasized
 - contextualized science, e.g. Problem-based and interdisciplinary knowledge; STEAM
 - Experience of learners should be included
 - Address the affective domain as well
 - Learner-centered approaches
 - Develop 21st century skills for their job market
- Importance of active teaching and critical learning in Physical Sciences
- Challenges in traditional teacher-centred approaches

Research Question

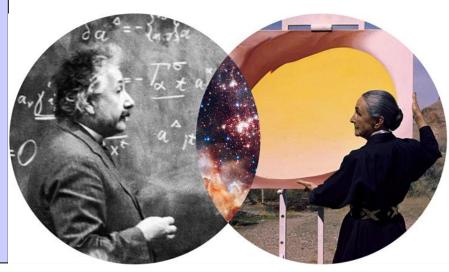
How does empowering Physical Sciences teachers using a STEAM approach foster active teaching and critical learning?

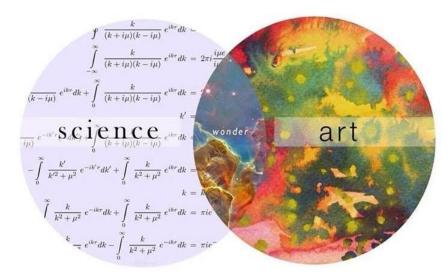

€NWU®


Conceptual Framework

- SDL
 - Taking ownership of learning with or without the help of others (Knowles, 1975)
- Strategy:
 - cooperative and problembased
 - puppetry
 - STEM STEAM
 - Shared tenets of arts and science
 - Science-Arts epistemological border crossing

Research Unit Self-Directed Lear

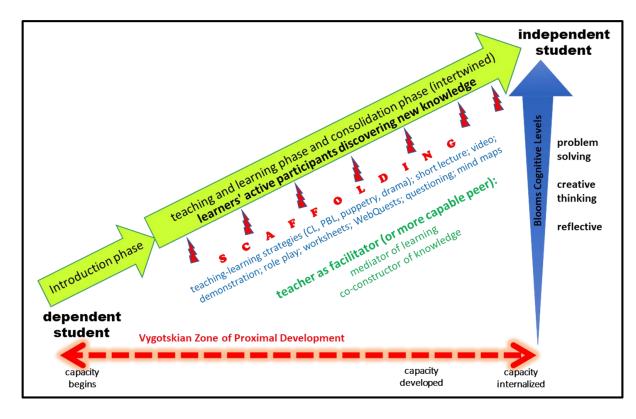

 Affordances for Teachers Professional Development


Science-Arts epistemological border crossing Shared tenets of Science and Arts

themarginalian.org

https://www.deviantart.com/camilalonart/art/Art-and-science-Venn-Diagram-603793278

https://za.pinterest.com/pin/520517669405828716/


SDL Research Unit Self-Directed Learning

Shared tenets of Science and Arts

Shared tenets	In the Sciences	In the Arts				
Noticing: Learners notice the world around them	this means collecting data, whether through informal or formal means, is essential for gaining insights into the functioning of the world	the process involves closely studying and analysing behaviours and phenomena in order to accurately depict and portray them through artistic mediums.				
Wondering: Learners wonder how the world works	scientists engage in the process of questioning, investigating ideas, and fostering inquisitiveness and hypothesis formation	By utilising their artistic skills, artists creatively construct situations, envision stories, and produce mental visuals.				
Visualising: learners visualise ideas to make meaning	scientists employ various methods such as designing experiments or developing models to explore optimal solutions for problems	artists transform abstract concepts into tangible forms through their visual and performed compositions.				
Exploring: learners seek to unravel the intricacies of why things exist as they do or to envision alternative realities	scientists conduct experiments to explore their world	artists develop their skills and refine their ideas , striving to achieve the desired expression.				
Communicating: learners must communicate what they understand	Scientists construct explanations and arguments with each other, all of which are rooted in evidence.	An exhibition or performance often encourages critical feedback from spectators				
Source: Fulton and Simpson-Steel	Source: Fulton and Simpson-Steele (2016:3-6).					

THEORETICAL FRAMEWORK

- Social
 Constructivism:
 Learning as a social process
- Zone of Proximal Development (ZPD)

- Scaffolding: Support provided to bridge the ZPD
- The Zone of Proximal Teacher Development (ZPTD)

The Intervention- Day 1

- The Short Learning Programme (SLP), grounded in Self-Directed Learning (SDL) principles
 - Spanned over three days
 - Exploring teachers' abilities and integrating arts into science teaching.

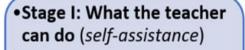
• Day 1 Focus: Theoretical foundations of STEAM pedagogy

- through interactive, cooperative and problem-based learning
- Researcher-led micro-teaching session to model SDL and professional practice
- Teachers engaged in **individual and group activities** using:
 - **Cross-cultural artefacts**: jigsaw method, puppets, drama-based scenarios, and De Bono's Hats
- Aim: Foster critical discussion, reflection, and application of arts in science teaching

The Intervention- Day 2

Focus: Applying STEAM pedagogy in science teaching.

- Teachers designed a concise STEAM teaching-learning experience without external assistance
- They delivered 10-minute micro-lessons in small groups, demonstrating knowledge transfer from Day 1
- Researcher facilitated within the ZPD,
 - offering scaffolding and
 - constructive feedback
- Key objective: Identify own professional development needs (SDL) through critical reflection of their own shortcomings



The Intervention- Day 3

- Focus: Addressing gaps identified in previous sessions,
- reinforcing SDL and professional growth.
- Teachers revisited and refined STEAM-based learning activities to strengthen their practice
- The researcher facilitated deeper engagement with art tools used on Day 2
- Teachers developed individual STEAM teaching-learning
 experiences on topics of their choice
- Self-assessment: Identified personal learning goals and development needs
- Three-month follow-up: Classroom observations to assess
 knowledge transfer and impact

Interplay between Theoretical and Conceptual Frameworks

- •Stage II: What the teacher cannot do (expert assistance)
- Stage III: Internalization -Recursion (Self directedness)

ZPTD

Interventionist

- Link to stage I of ZPTD -Teacher is able to prepare and teach science topic using the arts in science as related to STEAM pedagogy
- Link to stage II of ZPTD Evaluate teacher's teaching practices to establish where help is needed, conduct classroom observation, examine teacher's teaching philosophy, includingthe use of cultural-historical activity theory (CHAT), provide reflective report, collect infomation and make warranted claims for professional development of the candidate
- Link to stage III of ZPTD Use instructional tool such as STEAM pedagogy to guide classroom discourse, or Problem-based learning, micro-teaching, cooperative learning, flipped lesson to promote teacher's self-direction and professional practice

- Link to stage I of ZPTD Teacher is able to facilitate a conducive learning environment that support teacher-learner healthy interactions
- Link to stage II of ZPTD Expert assistance is able to mediate teacher-teacher interactions, teacher -expert interactions, and at best encourage classroom practices that support the role of arts in science learning and teaching
- Link to stage III of ZPTD Post-intervention, teacher candidate is able to implement and lead inquiry, dialogue, critical thinking, and problem solving skills among their own students, thus demonstrating improvement in their selfdirected learning abilities and professional development

Socio-constructivism in context

Diagrammatic representation of ZPDT

Source: Mafokwane (2024) Adapted and modified after Warford (2011)

Methodology

- Research Design: Mixed-methods (QUAL:quan)
- Interpretivist paradigm
- Participants: 15 Physical Sciences teachers from Mopani District, Limpopo, South Africa
- Five participate in the observations and interviews
- Data Collection: Observations (RTOP) & interviews
- Ethical considerations

Key Findings – Observations (RTOP)

Components of RTOP	RTOP	Average and		Teache	er perforr	nance	
	Questions	Mean Score	ST1	ST3	ST7	ST10	ST14
Design and implementation of STEAM	Q1 – Q5	Average	11	16	14	15	17
pedagogy	Q1 Q3	Mean	2,2	3,2	2,8	3	3,4
Content	Q6 – Q10	Average	17	14	14	15	16
(propositional knowledge)	40 410	Mean	3,4	2,8	2,8	3	3,2
Content	Q11 – Q15	Average	8	12	15	13	14
(procedural knowledge)	Q11 – Q15	Mean	1,6	2,4	3	2,6	2,8
Classroom culture	046 000	Average	14	12	13	12	14
(communicative interactions)	Q16 – Q20	Mean	2,8	2,4	2,6	2,4	2,8
Classroom culture		Average	13	13	13	13	14
(student-teacher relationships)	Q21 – Q25	Mean	2,6	2,6	2,6	2,6	2,8
Overall teacher performan	ce by Mean	score	2,52	2,68	2,76	2,72	3

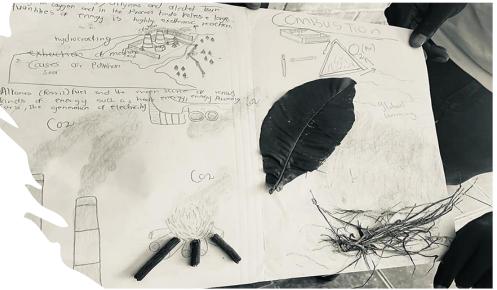
Key Findings – Observations (RTOP)

	Teacher performance				
	ST1	ST3	ST7	ST10	ST14
Overall teacher performance by Mean	2,52	2,68	2,76	2,72	3,0

- ST14 received the highest mean score of 3,0
 - holds a BSc degree and a PGCE, may possess strong content knowledge
 - have had greater exposure to the subject matter
 - employed arts integration:
 - he used visual representation of acid and bases compounds
 - and incorporated daily items such as toothpaste, soap, and perfumed
 - create a more engaging and interactive classroom (49 lle) environment
 - learners develop a deeper appreciation for science and the arts.

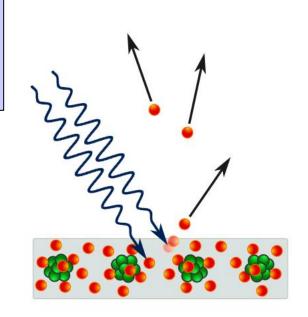
Key Findings – Observations (RTOP)

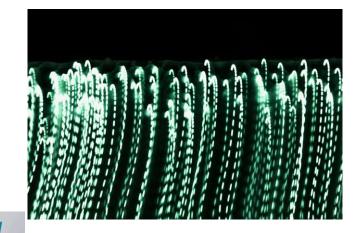
	Teacher performance				
	ST1	ST3	ST7	ST10	ST14
Overall teacher performance by	2 5 2	2 68	2 76	2,72	3.0
Mean score	2,32	2,00	2,70	2,12	3,0


- ST1 received the lowest mean score of 2.52,
 - beginner science teacher with only two years of teaching experience.
 - limited experience may have affected his ability to effectively engage students and facilitate reflective learning (Zimmerman, 2016).
- employed arts integration:
 - used images of falling objects, phases of the moon, and the circular rotation of the earth to
 - illustrate key concepts related to learners' social context
 - learners to dramatise pushing forces, including using arts drawings

Key Findings – Observations (RTOP)

 ST3 used visual aids such as drawings, diagrams, and charts to explain complex chemical ideas related to organic molecules and their application to everyday life





Key Findings – Observations (RTOP)

- ST7 used drama to illustrate the concept of photoelectric effects:
 - The learners took turns in the roleplay to demonstrate how a metal with sufficient kinetic energy ejects electrons from a metal surface
 - The teacher dramatised by roleplaying herself as a Lightwave and her learners as energy source.

Key Findings – Interviews

Teachers' views of STEAM pedagogy

n	Items (Interview Questions	Quotes from Participating	Freq	Sub-	Teacher
		Physical Sciences Teachers		total	ID
1	What do you think STEAM	Integration of arts in		3	ST14,
	pedagogy is?	teaching STEM			ST7, ST3
		Apply arts in STEM subjects		2	ST10, ST1
2	Do you think integrating art	Yes, fosters creativity,	////	4	ST14,
	into your science lessons	inquiry and process skills			ST7, ST3,
	and/or classroom is something				ST10
	you should consider in the	Sometimes, not easy to			
	future? If yes, why? If no, why	Sometimes, not easy to include in all my lessons	/	1	ST1
	not?	include in all my lessons			
3	In terms of classroom culture	Use of dramas, learners as a		2	ST10, ST3
	and creating a conducive	source, and			
	learning environment, how	contextualisation		2	CT11
	would you improve your	Use visual representations	///	3	ST14, ST1, ST7
	learners' reflective thinking	and homemade artefacts			511, 517
	and reasoning skills?				

Key Findings – Interviews

Teachers' views of STEAM pedagogy

n	Items (Interview	Quotes from Participating	Freq	Sub-	Teacher
	Questions	Physical Sciences Teachers		total	ID
4	What do you think of	It can make learning more		3	ST14, ST7,
	STEAM pedagogy as a tool	engaging and enjoyable for			ST3
	for integrating the arts	students.			
	into STEM lessons?	No, it won't make any difference		2	ST10, ST1
5	How did your learners	Learners were motivated and		3	ST14, ST7,
	respond to the integration	actively engaged in creative			ST3
	of the arts into the science	and critical thinking skills.			
	classroom when you were	Time-consuming, some learners			
	observed by the	hold the same view regarding arts		2	ST10, ST1
	researcher?	activity in science			
		Perspectives on STEAM		10	
	Totals:	Perspectives on active and		10	
		critical learning			
		Possible challenges		5	

Interviews (Overview)

Teachers' views of STEAM pedagogy	Freq - total	Key Findings
Perspectives on STEAM	10/25	Evidence that PSTs have some understanding of integrating the arts into science, effectively creating a STEAM approach.
Perspectives on active and critical learning	10/25	Arts integration supports creativity, peer collaboration, and enjoyment of science
Possible challenges	5/25	Time consuming Finding resources to support STEAM integration Motivating learners effectively

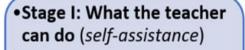
Did Empowering Physical Sciences Teachers to Introduce a STEAM Approach provided a Path to Active Teaching and Critical Learning?

• Main finding:

 The findings suggest that empowered Physical Sciences teachers integrating STEAM can contribute to active teaching and critical learning

• Evidence of successes:

- Teachers improved engagement strategies using arts-based methods (e.g., drama, visual aids)
- The SLP enhanced collaboration and communication skills, fostering creativity despite resource constraints


• What were the limitations?:

- Conceptual and resource-related challenges still hinder full STEAM implementation.
- Time constraints limited teachers' ability to consistently apply arts integration

Interplay between Theoretical and Conceptual Frameworks

- •Stage II: What the teacher cannot do (expert assistance)
- Stage III: Internalization -Recursion (Self directedness)

ZPTD

Interventionist

- Link to stage I of ZPTD -Teacher is able to prepare and teach science topic using the arts in science as related to STEAM pedagogy
- Link to stage II of ZPTD Evaluate teacher's teaching practices to establish where help is needed, conduct classroom observation, examine teacher's teaching philosophy, includingthe use of cultural-historical activity theory (CHAT), provide reflective report, collect infomation and make warranted claims for professional development of the candidate
- Link to stage III of ZPTD Use instructional tool such as STEAM pedagogy to guide classroom discourse, or Problem-based learning, micro-teaching, cooperative learning, flipped lesson to promote teacher's self-direction and professional practice

- Link to stage I of ZPTD Teacher is able to facilitate a conducive learning environment that support teacher-learner healthy interactions
- Link to stage II of ZPTD Expert assistance is able to mediate teacher-teacher interactions, teacher -expert interactions, and at best encourage classroom practices that support the role of arts in science learning and teaching
- Link to stage III of ZPTD Post-intervention, teacher candidate is able to implement and lead inquiry, dialogue, critical thinking, and problem solving skills among their own students, thus demonstrating improvement in their selfdirected learning abilities and professional development

Socio-constructivism in context

Diagrammatic representation of ZPDT

Source: Mafokwane (2024) Adapted and modified after Warford (2011)

Conclusion & Way Forward

- Need for support structures (mentorship, resources, and continued training).
- Encouraging teacher agency in implementing STEAM.
- Future research: Scaling up STEAM pedagogy in different contexts.

Afrikaans: Baie Dankie

English: Thank you

Setswana: Ke a leboga

Italian: Grazie mille or Molte grazie

\rm MWU°