Science Education in Universities:

Practical Impacts

Martina ARABADZHIEVA / Albena VUTSOVA

Faculty of Economics and Business Administration, Sofia University "St. Kl. Ohridski", Bulgaria NPSE Conference, Florence, Italy March 2025

Science education

- Science education studies the inter-relationship between science as a discipline and the application of educational principles to its understanding, teaching and learning
- Science education is one of the most integral parts of today's education, since it is responsible for creating scientifically literate citizens and promoting crucial 21st-century skills
- Science education solves and evaluates complex problems and therefore requires a growing understanding of scientific concepts

What provokes interest to science education?

- New global paradigm
- Addressing global challenges
- Transformation of economic sectors
- Need of new type qualitative knowledge
- Need of skilled labor force

Type of Science education in accordance with:

- Educational methods
- Level/degree of engagement
- Milieu of education
- Target/age groups

Role of universities - essential players in SE

- Fostering knowledge, innovation, and economic growth while linking science and society and applying innovative teaching models
- Providing key skills development
- Providing new generation labor force
- Functioning as a bridge between new knowledge and society's needs

Innovative Teaching - element of science education

- Contemporary key teaching methods:
 - Inquiry-Based Learning
 - Competency-Based Learning
 - Problem-Based Learning
 - Project-Based Learning
 - Challenge-Based Learning
- Their aims: Bettering knowledge absorption, transfer and sharing; skill development

Inquiry-Based Learning

- Students investigate real-world problems explore problematic topics; test ideas, and think creatively via:
 - Fostering essential skills and competencies
 - Improved analytical thinking and data processing
 - Applying research abilities and inbuilt them in the process of education
 - Bettering communicative ability

NB! IBL- Actively applied in Bulgarian universities

Competency-Based Learning

- Focus on deep understanding and practical application of knowledge
- Combine theoretical knowledge, practical skills, and professional attitudes
- Provide with cost-effective degree options, clearer learning outcomes, higher student engagement, and improved retention rates

Problem-Based Learning

- Encourages independent and critical thinking
- Develops cognitive & analytical skills
- Improves team working behavior
- Raises learning motivation
- Stimulates students to work on complex challenges

NB! There is a mix-up in the understanding of problem-based and project-based approaches, which is why it is not very widespread in some universities

Problem-Based vs Project-Based Learning

Bottom Line: In Problem-Based Learning, students have more control over their own learning and the processes involved.

Project-Based Learning (PjBL)

- Provides active learning students gain knowledge through hands-on projects and real-world applications
- Encourages problem-solving, decision-making, and creativity
- Promotes teamwork and communication through group activities
- Increases student interest and research inclusiveness
- Focuses on real-world challenges and tangible outcomes
- Develops independence and responsibility attitude in students

NB! Common in Bulgarian universities, fostering essential future-ready skills

Project-Based Learning Benefits

BENEFITS OF PROJECT-BASED LEARNING

Approach to our research

- Main task –study the effectiveness of science-based education and students perceptions
 - Mixed-methods approach literature review; observations; interviews; data processing
- Instrument:
 - In-depth interviews conducted with 19 students from Sofia University (2022– 2024); who carried out targeted projects
 - Students project ideas, evaluated by an expert jury
 - Monitoring of project progress and results assessment
- Outcome completed courses approved by academic departments and shared on an e-learning platform for broader accessibility
 - Broader interest of these courses has been facilitated
 - Feedback has been collected and analyzed

Case Study Context

- Lecturers and students develop knowledge through bottom-up project initiatives
- Student initiatives help universities adopt new research and teaching methods and implement them
- Students and researchers collaborate aiming to create modern course materials and thus improve their skills
- Focus on problem-solving issue

Model for problem assessment and prioritization

Problem Assessment and Prioritization	 Analysis of the Problem Type and Degree of Significance 	
Pathways to Solutions	 Development of Alternative Approaches 	
Outcome Evaluation	 Testing and Combining Solutions 	
Selection of an Implementation Model	 Analysis of Results and Model Selection 	

There is a growing interest among students in applying for and participating in such projects

Findings and results:

- Most projects were in ICT aria, knowledge management, and smart communication
- Project results were incorporated into Sofia University courses, making them more relevant and accessible
- Courses were uploaded on the university website and YouTube as well
- Some universities adopted and appreciated the courses through various communication channels

In summary

- The study processed and analyzed all projects results
- Competitions encourage students to propose and implement solutions, integrating their ideas into university curricula
- Interviews with students and mentors show high satisfaction and growing interest in science-based education

Conclusions I

- Innovative teaching methods provide students with relevant skills for the modern job market
- PjBL enables students and scholars:
 - to promote project culture
 - to co work in new courses developing or updating existing ones
 - to address given society and business challenges

Conclusions II

- Student participation helps refine; improve and update courses, making learning more flexible and pertinent while also encouraging involvement in other project initiatives
- Tackling the resistance from some academic staff to new teaching methods; more efforts are needed to expand inclusive collaboration between students and lecturers
- Expanding the scope of science education at the department level

Thank you!

m.arabadzhieva@feb.uni-sofia.bg