**Elucidating the Inspirational Factors in School-Based FabLab Activities and the Development of Independence** Mao Saito<sup>1</sup>, Keitaro Tokutake<sup>2</sup>, Dai Sakuma <sup>1</sup> Shumei University, Japan<sup>1.</sup>Institute of Science Tokyo, Japan<sup>2</sup>

# What are School-Based FabLabs?

- FabLabs originate from MIT (Gershenfeld, 2012) as digital fabrication workshops.
- Open Design City(Berlin): Associated with "open (source) design" on the Web, linked to "city planning" in the real world, and "open" to citizens.
- School-Based FabLabs (s-Labs):
- Adapted for educational settings, equipping students with hands-on STEM/STEAM learning experiences.
- Increasingly used in Japan for fostering self-directed learning and

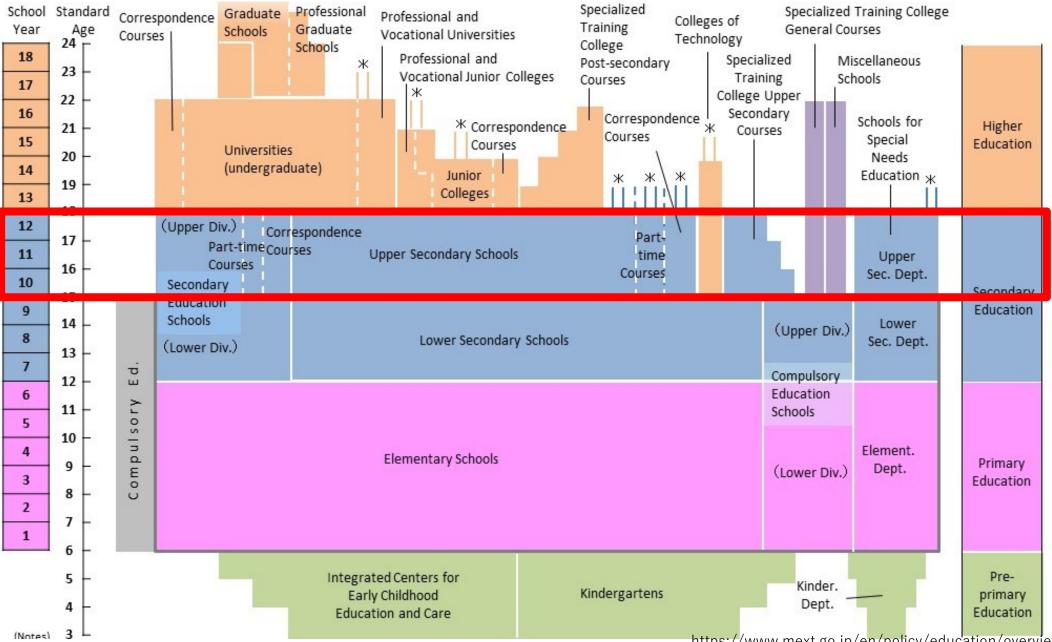
technical proficiency.

# **Research Gap**

Understanding these motivational factors is crucial for designing effective learning environments.

Student's ability

 $\mathcal{S}$ 


MIT, Berlin

Japan

s-Labs

s-Labs

#### The Japanese School System and the Position of s-Labs



https://www.mext.go.jp/en/policy/education/overview/index.htm

Purpose of This Study

I) Student engagement in FabLab activities: What activities do students undertake?

II ) Independent Learning Development: How does FabLab participation foster autonomy?

III) Inspirational Factors (IF): What motivates students to participate and persist?

By addressing these questions, we hope to gain insights that will inform the better design of FabLab-based learning environments. These insights will contribute to the design of effective FabLab-based learning environments.

We combine qualitative and quantitative methods to analyze student engagement.

interview

• Interview for three university students who previously participated in s-Lab activities.

Data Collection



**Data Analysis** 



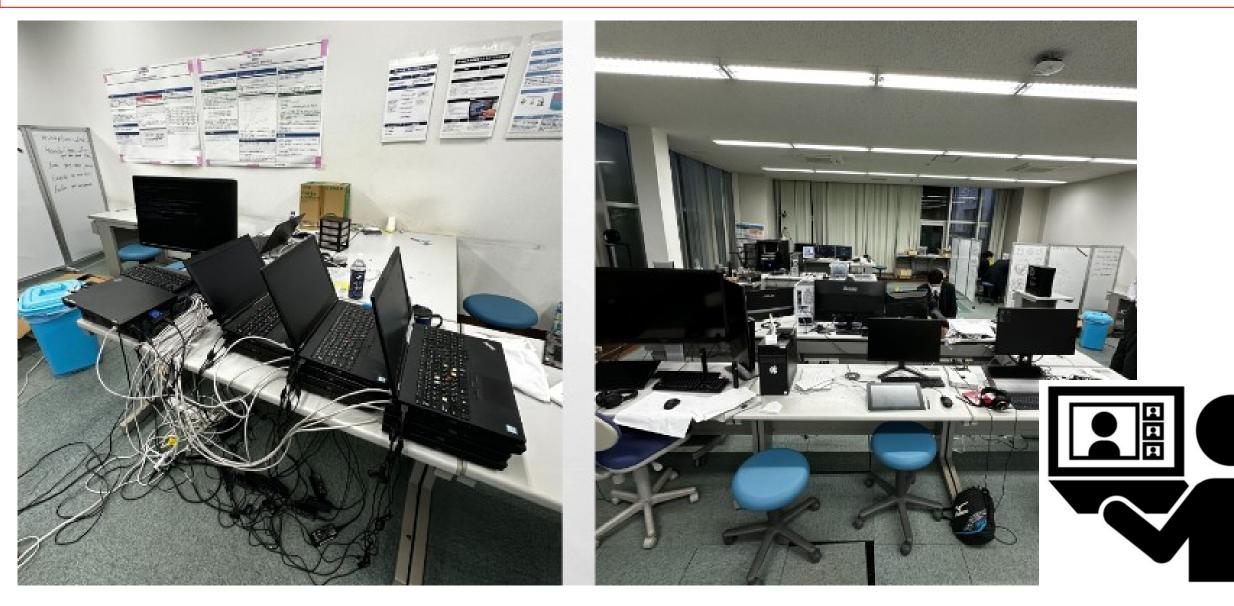
- Activity Logs: Students recorded engagement in FabLab projects.
- Semi-Structured Interviews: Explored motivations and learning experiences.
- Classification of Activity Types & Triggers.
- SCAT Qualitative Analysis: A four-step coding method extracting-key phrases, explanatory concepts, and theoretical constructs.

We combine qualitative and quantitative methods to analyze student engagement.

# Interview for three university students who previously participated in s-Lab activities.

Data Collection

interview




**Data Analysis** 



- Activity Logs: Students recorded engagement in FabLab projects.
- Semi-Structured Interviews: Explored motivations and learning experiences.
- Classification of Activity Types & Triggers.
- SCAT Qualitative Analysis: A four-step coding method extracting-key phrases, explanatory concepts, and theoretical constructs.

Following photos were presented to participants while the interview.



We combine qualitative and quantitative methods to analyze student engagement.

interview

Interview for three university students who previously participated in s-Lab activities.

**Data Collection** 



Activity Logs: Students recorded engagement in FabLab projects.

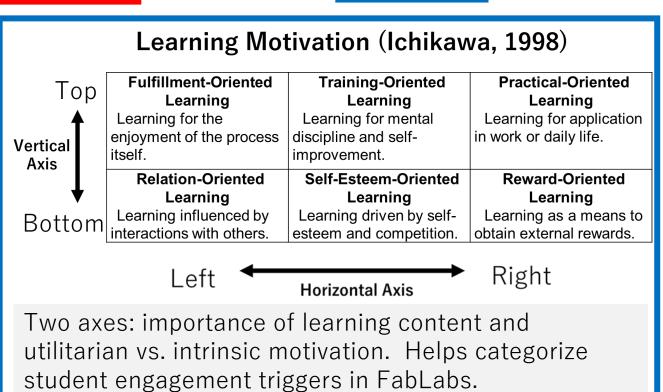
Semi-Structured Interviews: Explored motivations and learning experiences.

**Data Analysis** 



Classification of Activity Types & Triggers. SCAT Qualitative Analysis: A four-step coding method extracting-key phrases, explanatory concepts, and theoretical constructs.

#### Table Learning Activity Log while interview


| 学年 | 月  | 活動内容                     | 活動の5カテゴリー | きっかけ             | 6カテゴリー |
|----|----|--------------------------|-----------|------------------|--------|
| 高1 | 春頃 | 数理研究同好会に所属               | 個人での活動 ▼  | 担任の先生にすすめられ<br>た | 関係志向 ▼ |
|    |    | 数理研究の他行とのオンライン交流会<br>に参加 |           | 顧問の意向            | 関係志向 ▼ |

# Analyzed children's play behavior and categorized physical play Niwa et al. (1998)

Activity types categorized into:

- 1. Challenging Activities
- 2. Skill-Oriented Activities
- 3. Expectation-Driven Activities
- 4. Individual Activities
- 5. Team-Based Activities
- 6. Other (e.g., mentoring younger students)

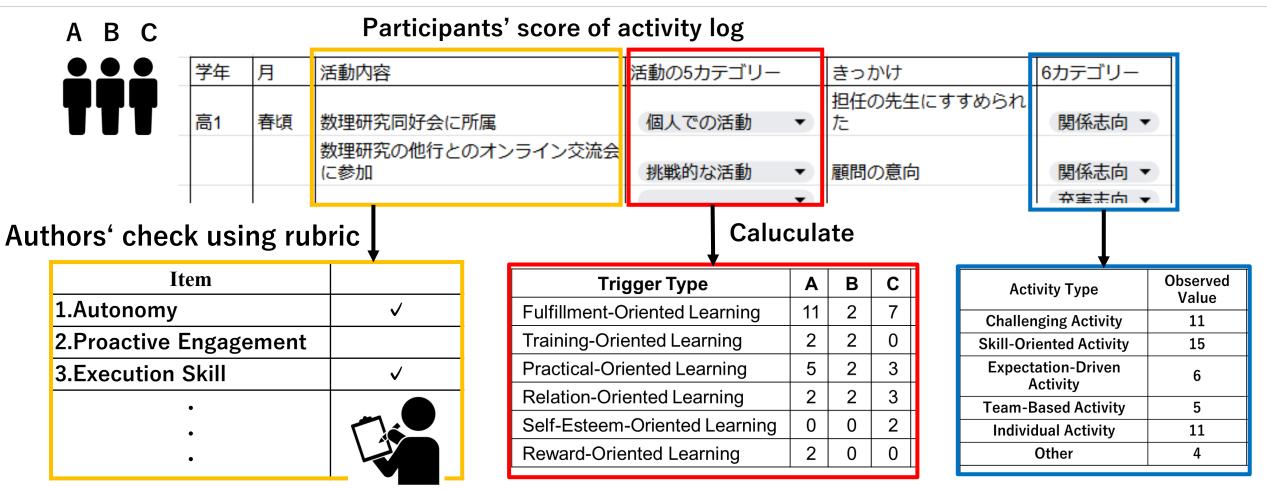
Framework provides insight into how different forms of play affect motivation / skill development.



Created an instrument (Table Learning Activity Log) to be used in the interviews.

We combine qualitative and quantitative methods to analyze student engagement.

interview


- Interview for three university students who previously participated in s-Lab activities.
- Activity Logs: Students recorded engagement in FabLab projects.
- Semi-Structured Interviews: Explored motivations and learning experiences.

**Data Analysis** 

**Data Collection** 

- Classification of Activity Types & Triggers(inspired by Ichikawa, 1998).
- SCAT Qualitative Analysis: A four-step coding method extracting-key phrases, explanatory concepts, and theoretical constructs.

Study combine qualitative and quantitative methods to analyze student engagement.



We coded and quantified the descriptions and selected categories from the activity log obtained through interviews. These data were then analyzed statistically to understand student engagement patterns and learning motivations in s-Labs."

The conceptualization of the learners' prompts was conducted using Otani's (2022) Steps for Coding and Theorization (SCAT) qualitative analysis method, which consists of four steps**:** 

(1)Key Phrases in the Text, (2) Paraphrased Phrases, (3) Concepts Explaining the Phrases, and (4) Theme / Constructed Concept.

| No. | Speaker | Text                                                                                                                                                               | (1) Key Phrases in the Text           | (2) Paraphrased<br>Phrases     | (3) Concepts<br>Explaining the<br>Phrases         | (4) Theme /<br>Constructed Concept                     |
|-----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|---------------------------------------------------|--------------------------------------------------------|
| 1   | A       | Oh, if you don't enable<br>SSL, you get a<br>warning, right? So,<br>yeah, if I wanted to put<br>the web server online<br>as it was, I <i>had to</i><br>enable SSL. | SSL / warning /                       | Mandatory step /<br>compliance | Explanation of why it was necessary               | Justification for the<br>necessity of this<br>activity |
| 2   | Author  | Basically, it was<br>necessary for 37, 38,<br>37, 39, 40, and 41, so<br>yeah.                                                                                      | 37, 38, 37, 39, 40,<br>41 / necessary | Activity number /<br>required  | Checking whether<br>the activity was<br>necessary | Confirmation of the necessity of the activity          |

# Linking Research Objectives with Analysis Methods

To effectively present our results, I will explain how each research objective guided our analysis.

**Objective I**) Student engagement in FabLab activities: What activities do students undertake?

- Analysis Method: Classification of Activity Types (based on Ichikawa's Framework)
  Data Source: Activity Logs

Independent Learning Development: How does FabLab participation foster autonomy? **Objective II**)

- Analysis Method: Residual Analysis for Skill Development
  Data Source: Semi-Structured Interviews

Inspirational Factors (IF): What motivates students to participate and persist? **ObjectiveIII**)



- Analysis Method: Thematic Coding (based on SCAT Framework)
  Data Source: Semi-Structured Interviews

# Result and Analysis[1/3] What Motivates Students to Engage?(1)

Table 2. Response Results for the Six Trigger Types

| Trigger Type                  |    | Partcipants |   |       | Percentage |  |
|-------------------------------|----|-------------|---|-------|------------|--|
|                               |    | В           | С | total | reicentage |  |
| Fulfillment-Oriented Learning | 11 | 2           | 7 | 20    | 44.4       |  |
| Training-Oriented Learning    | 2  | 2           | 0 | 4     | 9.0        |  |
| Practical-Oriented Learning   | 5  | 2           | 3 | 10    | 22.2       |  |
| Relation-Oriented Learning    | 2  | 2           | 3 | 7     | 15.6       |  |
| Self-Esteem-Oriented Learning | 0  | 0           | 2 | 2     | 4.4        |  |
| Reward-Oriented Learning      | 2  | 0           | 0 | 2     | 4.4        |  |

• Students are predominantly motivated by intrinsic enjoyment rather than external rewards.

# Result and Analysis [2/3] What Motivates Students to Engage?(2)

Table 3. Test Results for the Six Activity Types

| Activity Type               | Observed<br>Value | Expected<br>Value | Standardized<br>Residual | Test Result    |
|-----------------------------|-------------------|-------------------|--------------------------|----------------|
| Challenging Activity        | 11                | 8.33              | 0.79                     |                |
| Skill-Oriented Activity     | 15                | 8.33              | 2.15                     |                |
| Expectation-Driven Activity | 6                 | 8.33              | -0.91                    |                |
| Team-Based Activity         | 5                 | 8.33              | -1.25                    |                |
| Individual Activity         | 11                | 8.33              | 0.79                     |                |
| Other                       | 4                 | 8.33              | -1.59                    |                |
|                             |                   |                   | ▲ Signif                 | icantly Higher |

- Skill-Oriented Activity showed a significantly higher engagement (p < 0.05).
- Students engaged significantly more in skill-oriented activities, reinforcing the importance of hands-on learning in FabLabs.

# Result and Analysis[3/3] How Does FabLab Engagement Impact Skills?

Key skills significantly developed:

- Autonomy (+6.09 residual)
- Execution Skill (+5.48residual)
- Execution & Technical Skills (+6.09 resid
- Questioning Skills (+5.18 residual)

 Students actively improve their technical expertise, problem-solving, and inquiry abilities in FabLabs.

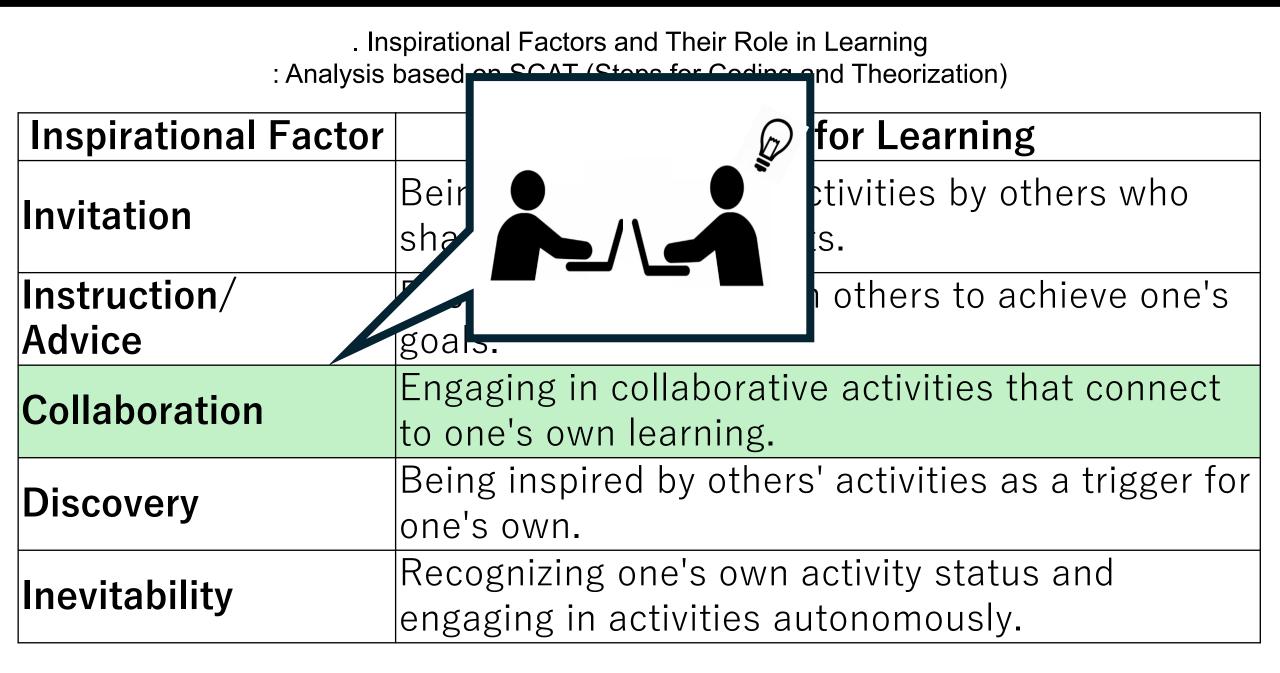
| Label                                     | Observed<br>Value | Expected<br>Value | Standardized<br>Residual | Test<br>Result |
|-------------------------------------------|-------------------|-------------------|--------------------------|----------------|
| Autonomy                                  | 31                | 10.90             | 6.09                     |                |
| Proactive Engagement                      | 4                 | 10.90             | -2.09                    |                |
| Execution Skill                           | 29                | 10.90             | 5.48                     | <b>A</b>       |
| Problem-Finding Skill                     | 16                | 10.90             | 1.54                     |                |
| Planning Skill                            | 9                 | 10.90             | -0.58                    |                |
| Creativity                                | 17                | 10.90             | 1.85                     |                |
| Communication Skill                       | 3                 | 10.90             | -2.39                    |                |
| Listening Skill                           | 2                 | 10.90             | -2.70                    |                |
| Flexibility                               | 2                 | 10.90             | -2.70                    |                |
| Situational Awareness                     | 6                 | 10.90             | -1.49                    |                |
| Discipline                                | 0                 | 10.90             | -3.30                    | ▽              |
| Stress Control Skill                      | 0                 | 10.90             | -3.30                    | ▽              |
| Management Skill                          | 2                 | 10.90             | -2.70                    |                |
| Leadership Aptitude                       | 2                 | 10.90             | -2.70                    |                |
| Idea Generation                           | 16                | 10.90             | 1.54                     |                |
| Collaboration                             | 4                 | 10.90             | -2.09                    |                |
| Skill & Technical Skill                   | 31                | 10.90             | 6.09                     | <b></b>        |
| Craftsmanship                             | 15                | 10.90             | 1.24                     |                |
| Design Skill                              | 6                 | 10.90             | -1.49                    |                |
| Interdisciplinary Interest<br>& Knowledge | 6                 | 10.90             | -1.49                    |                |
| Questioning Skill                         | 28                | 10.90             | 5.18                     | <b></b>        |

Table 4 Results of Residual Analysis

. Inspirational Factors and Their Role in Learning

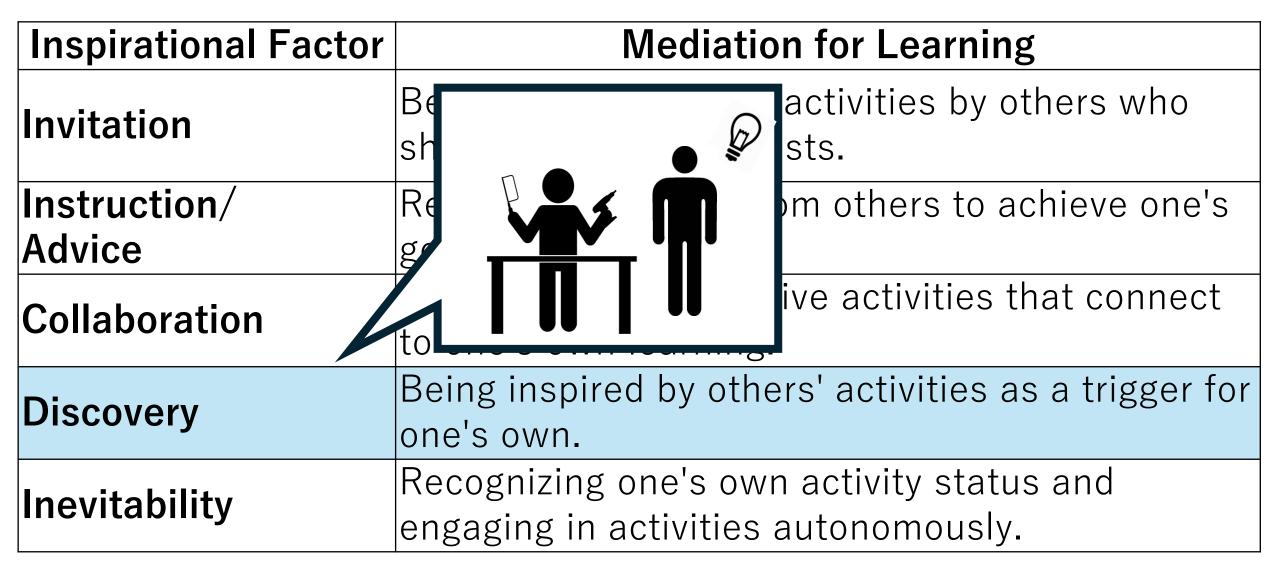
: Analysis based on SCAT (Steps for Coding and Theorization)

| <b>Inspirational Factor</b> | Mediation for Learning                                                         |
|-----------------------------|--------------------------------------------------------------------------------|
| Invitation                  | Being drawn into new activities by others who<br>share their prior interests.  |
| Instruction/<br>Advice      | Receiving guidance from others to achieve one's goals.                         |
| Collaboration               | Engaging in collaborative activities that connect to one's own learning.       |
| Discovery                   | Being inspired by others' activities as a trigger for one's own.               |
| Inevitability               | Recognizing one's own activity status and engaging in activities autonomously. |


. Inspirational Factors and Their Role in Learning : Analysis based on SCAT (Steps for Coding and Theorization)

| <b>Inspirational Factor</b> | Mediation for Learning                                                         |
|-----------------------------|--------------------------------------------------------------------------------|
| Invitation                  | Being drawn into new activities by others who share their prior interests.     |
| Instruction/<br>Advice      | Pom others to achieve one's                                                    |
| Collaboration               | to that connect                                                                |
| Discovery                   | B P ers' activities as a trigger for                                           |
| Inevitability               | Recognizing one's own activity status and engaging in activities autonomously. |

. Inspirational Factors and Their Role in Learning


: Analysis based on SCAT (Steps for Coding and Theorization)

| <b>Inspirational Factor</b> | Mediation for Learning                                                     |
|-----------------------------|----------------------------------------------------------------------------|
| Invitation                  | Being drawn into new activities by others who share their prior interests. |
| Instruction/<br>Advice      | Receiving guidance from others to achieve one's goals.                     |
| Collaboration               | tive activities that connect                                               |
| Discovery                   | o <b>Forman</b> ers' activities as a trigger for                           |
| Inevitability               | F III n activity status and autonomously.                                  |



. Inspirational Factors and Their Role in Learning

: Analysis based on SCAT (Steps for Coding and Theorization)



. Inspirational Factors and Their Role in Learning

: Analysis based on SCAT (Steps for Coding and Theorization)

| Inspirational Factor   | Mediation for Learning                                                         |  |  |
|------------------------|--------------------------------------------------------------------------------|--|--|
| Invitation             | Being drawn into new activities by others who<br>share their prior interests.  |  |  |
| Instruction/<br>Advice | R<br>g <b>(</b> ) g                                                            |  |  |
| Collaboration          | E tive activities that connect                                                 |  |  |
| Discovery              | ers' activities as a trigger for                                               |  |  |
| Inevitability          | Recognizing one's own activity status and engaging in activities autonomously. |  |  |

#### Result and Analysis[1/2] How Do Students Become Independent Learners?(2)

Table 8. Categories of Formed Subjectivity and Learning Actions: Analysis based on SCAT (Steps for Coding and Theorization)

| Category                    | Emerging Learning<br>Actions                                                                        | Utterance Content                                                                                                                                                                                                                                                       |
|-----------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental<br>Management | Expanding spaces to<br>share one's intellectual<br>curiosity and activities                         | "There are many people who are more interested in<br>information-related topics. ICTLab, too. Also, it's not just<br>that the shared space moved from the Mathematics<br>Research Club to ICTLab, but rather, it was about<br>broadening the space for activities." (3) |
| Collaborative<br>Knowledge  | Maintaining<br>psychological safety<br>and continuing<br>activities in an<br>environment with peers | "Having an environment where I could learn<br>programming together with like-minded peers was<br>really enjoyable for me." (2)                                                                                                                                          |

FabLabs foster autonomy by encouraging students to take initiative in their learning environments.

#### Result and Analysis[1/2] How Do Students Become Independent Learners?(2)

Table 8. Categories of Formed Subjectivity and Learning Actions: Analysis based on SCAT (Steps for Coding and Theorization)

| Category                    | Emerging Learning<br>Actions                                                                        | Utterance Content                                                                                                                                                                                                                                                       |
|-----------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental<br>Management | Expanding spaces to<br>share one's intellectual<br>curiosity and activities                         | "There are many people who are more interested in<br>information-related topics. ICTLab, too. Also, it's not just<br>that the shared space moved from the Mathematics<br>Research Club to ICTLab, but rather, it was about<br>broadening the space for activities." (3) |
| Collaborative<br>Knowledge  | Maintaining<br>psychological safety<br>and continuing<br>activities in an<br>environment with peers | "Having an environment where I could learn<br>programming together with like-minded peers was<br>really enjoyable for me." (2)                                                                                                                                          |

FabLabs foster autonomy by encouraging students to take initiative in their learning environments.

#### Result and Analysis[2/2] How Do Students Become Independent Learners?(2)

Table 8. Categories of Formed Subjectivity and Learning Actions: Analysis based on SCAT (Steps for Coding and Theorization)

| Category                    | Emerging Learning<br>Actions                                                                        | Utterance Content                                                                                                                                                                                                                                                       |
|-----------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental<br>Management | Expanding spaces to share one's intellectual curiosity and activities                               | "There are many people who are more interested in<br>information-related topics. ICTLab, too. Also, it's not just<br>that the shared space moved from the Mathematics<br>Research Club to ICTLab, but rather, it was about<br>broadening the space for activities." (3) |
| Collaborative<br>Knowledge  | Maintaining<br>psychological safety<br>and continuing<br>activities in an<br>environment with peers | "Having an environment where I could learn<br>programming together with like-minded peers was<br>really enjoyable for me." (2)                                                                                                                                          |

FabLabs foster autonomy by encouraging students to take initiative in their learning environments.

# Key Insights & Educational Implications

FabLabs foster self-directed learning through Inspirational Factors (IF), encouraging autonomy and skill-building. However, some challenges remain.

# Key Strengths:

- Students develop independence and technical proficiency.
- Hands-on experiences reinforce intrinsic motivation.

# **Challenges & Educational Implications:**

- Limited collaborative activities
  - $\rightarrow$  Suggests the need for structured teamwork programs.
- Lack of stress management strategies
  - $\rightarrow$  Highlights the opportunity to integrate resilience training.
- Variability in engagement levels
  - $\rightarrow$  Calls for personalized support systems to sustain long-term participation.

# **Future Directions:**

- Implement structured peer collaboration activities.
- Introduce stress-coping strategies to support student persistence.

# Thank you for listening.

#### References

- [1] Utsumi, S., & Nakamura, Y. "A Study on the Engineering Design Process (EDP) in STEM Teaching Materials at the Elementary Level in Tennessee, USA: Implications for Problem-Solving in Japanese Science Education," *Journal of Science Education (Japan)*, Vol.64, No.3, 2024, pp.221–235.
- [2] Fab Foundation. "Fab Charter," Online resource, 2025. <u>https://fab.cba.mit.edu/about/charter/ (Accessed January 18, 2025.)</u>
- [3] FabLab Japan Network. "FabLab Japan Network," Online resource. <u>http://fablabjapan.org/ (Accessed January 18, 2025.)</u>
- [4] Haramiishi, Y., Horiuchi, H., Ishida, K., Furuya, N., & Ouchi, H. "1A11: Rubric-based Educational Effects for Assessing Making Skills," Proceedings of the 65th Annual Conference of the Japanese Society for Engineering Education, Japan Society for Engineering Education, 2017, pp.20–21.
- [5] Ichikawa, S., Horino, M., & Kubo, N. "Perspectives on and Motivations for Learning that Underlie Study Methods," In S. Ichikawa (Ed.), *Study Method Consultation and Guidance from the Perspective of Cognitive Counseling*, Brain Publishing, 1998, pp.186–203.
- [6] Otani, T. (2008). "SCAT" a qualitative data analysis method by four-step coding: Easy startable and small scale data-applicable process of theorization. *Bulletin of the Graduate School of Education*, Nagoya University, 54(2), 27-44.
- [7] Matsuura, R., Okabe, D., & Watanabe, Y. "Case Report on the Introduction of a FABLAB in Public High Schools: A Practical Study," *Japanese Journal of Educational Technology*, Vol.44, No.3, 2021, pp.325–333.
- [8] Japan Society for STEM Education. Online resource, 2017. https://www.j-stem.jp/ (Accessed January 20, 2025.)
- [9] Niwa, T. "Classification of Physical Play in Early Childhood," Dōhō Fukushi: Ningengaku Fukushi-hen, No.4, 1998, pp.46–36.
- [10] Saito, M., Tokutake, K., & Sakuma, D. (2024)"Classification and Application of Feedback Prompt Requests for Generative AI in Self-Directed Programming Learning Among High School Students," *CIEC Spring Conference Proceedings*, Tokyo, Japan.
- [11] Patton, M. Q. "Qualitative Research & Evaluation Methods: Integrating Theory and Practice," Sage Publications, Thousand Oaks, 2014.
- [12] Watanabe, Y. (2013). FabLab's role in innovating manufacturing. Quarterly Journal of Public Policy & Management, 25(1)–28(4). Mitsubishi UFJ Research & Consulting.
- [13] Tokutake, K., & Sakuma, D. "Construction of a Learning Environment for Self-Sustaining Study in the School's Fab Lab," *Proceedings of the CIEC Spring Conference (Web)*, Vol.14, 2023, pp.27–32.

#### Inspirational Factors and Their Role in Learning : Analysis based on SCAT (Steps for Coding and Theorization)

| Inspirational<br>Factor | Specific Example<br>of Inspirational Factor | Awareness<br>After Inspiration                        | Utterance Content                                                                                                                                                                                                                                                                               | Mediation for Learning                                                         |
|-------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Invitation              |                                             | Challenge to engage in<br>activity                    | "Initially, when ICTLab* was established, it was by<br>our generation. Originally, "Rossi" was also<br>interested in programming, but when we entered<br>school, he invited me, saying, 'Do you want to try it<br>together?' So, I decided to give it a try, and that's<br>how it started." (2) | Being drawn into new activities by others who<br>share their prior interests.  |
| Instruction/<br>Advice  |                                             | Desire to design one's own activities                 |                                                                                                                                                                                                                                                                                                 | Receiving guidance from others to achieve one's goals.                         |
| Collaboration           | Content one wants to learn                  | Expectation of acquiring new knowledge                | - Inga nover ache it netare i adciada to legre g nit                                                                                                                                                                                                                                            | Engaging in collaborative activities that connect to one's own learning.       |
|                         | Interest/curiosity in the context of tasks  | Interest and curiosity towards resources              |                                                                                                                                                                                                                                                                                                 | Being inspired by others' activities as a trigger for one's own.               |
|                         | Isituation where an unavoidable             | Willingness and<br>determination to follow<br>through | "To proceed to the next stage, I had to do it; it was something that had to be done." (1)                                                                                                                                                                                                       | Recognizing one's own activity status and engaging in activities autonomously. |