
 

Serious Games for Learning Programming Concepts 
 

Ivona Frankovic1, Natasa Hoic-Bozic2, Lucia Nacinovic Prskalo3 
 

Abstract 
Serious games are specially designed computer games in which education is the primary goal, rather 
than entertainment. They are interactive competitive lessons with defined learning outcomes and their 
importance in contemporary educational practice is increasing. The implementation of serious games 
in teaching has a potential to facilitate the learning process in terms of increasing students’ interest in 
learning to ensure better understanding of learning materials and application of acquired knowledge. 
Serious games can be used to stimulate programming learning. Besides learning coding skills, 
programming supports the development of computational thinking, which is widely applicable and 
useful, not just in computer science, but also in everyday life. Programming is recognized as a crucial 
skill, even a new literacy, for all children, and there is the emerging need to introduce programming 
concepts into primary schools from the first to the fourth grade. Computational thinking represents an 
increasingly important focus in informatics (computer science), and ways of incorporating it into the 
school curricula are being explored. Serious games offer an exciting opportunity for learners to 
engage in computational thinking. This paper presents an overview of the game genres suitable for 
better understanding of certain programming concepts. Games and tasks that were taken into 
consideration trigger the development of computational thinking skills by incorporating components 
such as abstraction, decomposition, evaluation, and generalization. The examples of serious games 
are given and classified according to the main programming concepts. This classification can be a 
starting point for selecting and designing adequate serious games to support the effective learning of 
programming concepts in the classroom. 
 
Keywords: serious games, computational thinking, primary education, game-based learning;  
 

1. Introduction 
Didactic games can be defined as interactive, competitive lessons with defined learning outcomes that 

enable students to have fun during acquiring knowledge. Their goal is not merely fun but they contain 

an educational component as well [1][2]. 

As didactic video games encourage student motivation and facilitate the learning of complex materials, 

they are increasingly being used in informatics (computer science) teaching [3]. The main goal of the 

games in informatics teaching is to introduce students to the world of complex problems, and they are 

particularly important for the development of computational thinking (CT) and programming learning 

[4].  

The question that arises is to what extent the CT development is associated with programming and 
whether it should be developed before the programming learning itself, or it is sufficient to introduce it 
simultaneously at the same time when programming. According to [5] CT can be separated from 
programming, and should be taught before programming teaching starts.  
In order to successfully use games for CT and programming, it is necessary to explore which games 
and logical tasks are appropriate for the development of particular concepts, i.e. a framework for 
programming learning for younger students using game based learning (GBL) needs to be developed. 
As a first step of this research, this paper presents work-in-progress with the aim to identify serious 
games that are suitable for understanding basic concepts of computational thinking. 
 

2. Computational thinking 
The best way to teach students coding is to teach the key coding skills first. It is necessary to start with 
the essential elements for the key building blocks of computer literacy. Many coding skills are not just 
important for programming, they are critical skills for any career. It is more important to help children 
gain the thinking skills than to actually write codes. It is widely accepted that students need to 
demonstrate an understanding of the patterns evident in programming rather than focusing only on 
syntax and semantics of programming [6][7].  

                                                           
1
 Department of Informatics, University of Rijeka, Croatia 

2
 Department of Informatics, University of Rijeka, Croatia 

3
 Department of Informatics, University of Rijeka, Croatia 



 

Computational thinking is a general analytic approach to problem-solving, designing systems and 
understanding human behaviour concerned with conceptualizing, developing abstractions and 
designing systems that overlap with logical thinking and requires concept fundamental to computing 
[8][9]. Some studies support the idea that everyone should think computational and that it is crucial for 
children to develop CT skills before formal programming learning [10] [11], while others claim it is 
questionable what skills and abilities develop CT and how it should be integrated into education [12]. 
The most suitable game types for problem solving are puzzles, simulation games, strategy games, 
adventure games, artificial life and management games [13]. The need for the introduction of coding 
and the development of computational thinking in primary schools has already been recognized and 
competitions such as Hackathon on Coding, Bebras are one way of rewarding excellence in that area. 

 
3. Games and logical tasks for learning computational thinking  
The aim of the Bebras challenge [14] is to promote students’ interest in informatics learning from the 
beginning of their education by solving short tasks, and deepen computational thinking. The most 
important components for developing computational thinking are interesting logical tasks or puzzles.  
In the papers [15] and [6], five key computational thinking skills are suggested: 
 

 Abstraction makes problems easier to think about by spotting key elements in certain 
problem/task and removing unnecessary details without losing any important information. 

 Decomposition is the way of thinking about problems in terms of their component parts that 
can be understood, solved, developed and evaluated separately. 

 Algorithmic thinking is the ability to think in terms of sequence and rules as a way of solving 
problems and it needs to be applied when steps of problems repeat in similar sequence. It 
involves creating and executing an algorithm. 

 Evaluation is the process of ensuring that the obtained solution is suitable for the given 
purpose.  

 Generalization is a way of quickly solving new problems based on the previous solutions, and 
building on the earlier experience. It is related to identifying patterns, similarities and 
connections. 
 

In [15] a two-dimensional categorization system, which incorporates CT skills and informatics 
concepts is introduced. A task should be assigned to only one informatics concept and up to three CT 
skills. 
Brennan & Resnick [16] define a framework for CT which is composed of three key dimensions:  
computational thinking concepts, computational thinking practices, computational thinking. They have 
also defined the following concepts that can apply to programming and non-programming context: 
sequence, loops, events, conditionals, operators, data and parallelism. 
The most interesting dimensions at the beginning of our research are computational thinking concepts, 
which are common in programming approach. As a first step, we wanted to show the connections of 
the CT concepts with the particular games and tasks (Table 1). The examples of the tasks are taken 
from the Bebras contest [14], while the examples of the games are taken from the following sites: 
Education, Blockly games and similar. It is planned to create such types of games in the Croatian 
language. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 1. Connections of the CT concepts with the particular games and tasks 
 

Computational 
thinking 
concepts 

Game 
genre 

Game 

example 

Task example Description 

Decomposition Sudoku Picture 

sudoku 

Kakuro for 

kids 

Animation 

Beach Flags 

Broken Window 

Beaver Code 

Solving the sudoku encourages the 

discerning of the exact rules of character 

scheduling. It is important to understand 

the rule and know how to apply it in 

different situations – from the easier ones 

when only one character is missing to the 

ones that are more difficult when more 

characters are missing.  

Abstraction Doodle 

dots 

Tetris 

Jigsaw 

puzzle 

Tangram 

games 

Patchwork 

Doodle 

dots 

 

Mushrooms  

Bracelet 

Walnut Animals 

Geocaching  

By solving these tasks and games, children 

learn to use and interpret symbols or 

representations in order to think through 

and solve a variety of problems. 

Algorithmic 

Thinking 

Puzzle 
games 
Maze 
games 

Blockly 
Games: 
Bird 
Run Marco  
Blockly 
Games: 
Maze 
 

Setting the 

Table 

Crane Operating 

Fair Share 

Candy jar 

Cross Country 

Beaver Code 

To solve these tasks, it is important to set a 

proper sequence of steps/commands. If 

they are not set in the proper order, the 

task cannot be solved. By identifying the 

patterns in the tasks, we can make 

predictions, create rules and solve 

problems that are more general. 

Evaluation Memory 
game 
Jigsaw 
puzzle 

Blockly 
Games: 
Puzzle 
Matching 
games 

Dream Dress 

Geocaching 

Cross Country 

The tasks involve statements 

(conditions/requirements) that must be 

evaluated (determined to be true or false) 

for a set of objects. Conditions and their 

evaluation are important because the 

decisions are made based on them. 

Generalization Pattern 
games 

Pattern 
games 

Beaver Code 

Birthday 

Balloons 

Animation 

Resolving a sequence of items enables 

students to practice the ability to recognize 

the rules of changing the elements in a row 

and to use these rules to predict the next 

step. These tasks help us to realize that 

certain information can assist in the 

prediction of what follows. 

 
3. Conclusion and future work 
This paper presents a work-in-progress research with the aim of creating a framework for 
programming learning in the younger age of students. The basis of the framework will be a two-
dimensional categorization consisting of programming concepts and computational thinking concepts. 
CT concepts and concepts of programming will be linked to the games and logical tasks that help in 
their learning. 
So far, the construction of the classification for CT has begun and the first version is presented in this 
paper. The following steps include extending the classification with the games for programming 
concepts, game collection, game and logical tasks development in the Croatian language, as well as 
the implementation of experiments in primary schools, where students from first to fourth grade will 
test the proposed framework in programming learning. 
 



 

4. Acknowledgment 
The research has been co-funded by the Erasmus+ Programme of the European Union under the 
project „Games for Learning Algorithmic Thinking“ (2017-1-HR01-KA201-035362). 

 

References 
[1] Blumberg, F. C., Almonte, D. E., Anthony, J. S., and Hashimoto, N., “Serious Games: What Are 

They? What Do They Do? Why Should We Play Them?,” The Oxford Handbook of Media 
Psychology, 2013, pp. 334–351. 

[2] Bourgonjon, J., De Grove, F., De Smet, C., Van Looy, J., Soetaert, R., and Valcke, M., 
“Acceptance of game-based learning by secondary school teachers,” Computers and Education, 
vol. 67, 2013, pp. 21–35. 

[3] Li, M.-C. and Tsai, C.-C., “Game-Based Learning in Science Education: A Review of Relevant 
Research,” Journal of Science Education and Technology, vol. 22, no. 6, 2013, pp. 877–898. 

[4] Bond, C., “Journal of Computer Assisted Learning,” Anzmac, vol. 3, no. 1, 2010, pp. 1–9. 
[5] Lu, J. J. and Fletcher, G. H. L., “Thinking About Computational Thinking Categories and Subject 

Descriptors,” pp. 6–10. 
[6] Csizmadia, A., Curzon, P., Humphreys, S., Ng, T., Selby, C., and Woollard, J., “Computational 

thinking: A guide for teachers,” 2015, pp. 1–18. 
[7] Kazimoglu, C., Kiernan, M., Bacon, L., and MacKinnon, L., “Understanding Computational 

Thinking before Programming,” International Journal of Game-Based Learning, vol. 1, no. 3, 
2011, pp. 30–52. 

[8] Wing, J. M., “Computational thinking,” vol. 49, no. 3, 2006, pp. 33–35. 
[9] Wing, J. M., “Computational thinking and thinking about computing,” Philosophical Transactions 

of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 366, no. 1881, 
2008, pp. 3717–3725. 

[10] Perković, L., Settle, A., Hwang, S., and Jones, J., “A framework for computational thinking across 
the curriculum,” Proceedings of the fifteenth annual conference on Innovation and technology in 
computer science education - ITiCSE ’10, 2010, p. 123. 

[11] Jake, Q. A. and Sherrell, L. B., “Why computational thinking should be integrated into the 
curriculum.” 2010, pp. 66–70. 

[12] Lee, I. … Werner, L., “Computational thinking for youth in practice,” ACM Inroads, vol. 2, no. 1, 
2011, p. 32. 

[13] Vahldick, A., Mendes, A. J., and Marcelino, M. J., “A review of games designed to improve 
introductory computer programming competencies,” Proceedings - Frontiers in Education 
Conference, FIE, vol. 2015–Febru, no. February, 2015. 

[14]  “Bebras.” [Online]. Available: http://www.bebras.org/. 
[15] DAGIENĖ, V., SENTANCE, S., and STUPURIENĖ, G., “Developing a Two-Dimensional 

Categorization System for Educational Tasks in Informatics,” Informatica, vol. 28, no. 1, 2017, pp. 
23–44. 

[16] Brennan, K. and Resnick, M., “New frameworks for studying and assessing the development of 
computational thinking,” annual American Educational Research Association meeting, 
Vancouver, BC, Canada, 2012, pp. 1–25. 

[17] https://www.education.com 
[18] https://blockly-games.appspot.com/ 

 

https://www.education.com/
https://blockly-games.appspot.com/

