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Abstract  
 

Research has been done on how students learn mathematics and how to teach them to solve 
problems. There are attempts how to teach mathematics using common sense. Such a methodology 
can be effective in teaching mathematics to pre-K, K, and elementary school children using their 
naturally existing common sense. Can this methodology be used to teach mathematics to adult 
learners? My research shows that some adults do not use their common sense in learning 
mathematics. Therefore, a similar methodology cannot be equally effective in teaching mathematics to 
that population of adult learners. This raises a few questions. How to teach introductory mathematics 
to adult students who do not use their common sense in learning mathematics? This can be 
summarized as a more general question. Do we use common sense to teach mathematics, or do we 
use mathematics to teach to use common sense? Moreover, can we use mathematics to develop 
analytical thinking? I conclude that one of the purposes of teaching introductory mathematics should 
be teaching students to use their common sense in solving problems. The habitual use of common 
sense will lead to the development of logical thinking. The net effect of such methodology will be the 
habitual use of their analytical thinking in solving all kinds of problems in mathematics, business, life, 
etc. 
 
Keywords: teaching mathematics, teaching methodology, adult students, learning processes, history of math 
education, common sense  

  
1. Introduction 
 
My research topic is math anxiety and math education in general [9-13]. This research led me to 
another closely related research topic, the historical roots of teaching mathematics. I research the 
teaching methodology of Anania Shirakatsi, a famous Armenian mathematician of the 7th century [8]. 
Anania Shirakatsi’s methodology of teaching arithmetic to children, described in the manuscript, does 
not use any fancy visual aids, does not require memorization, and eliminates learning by rote while 
building strong mathematical, long-lasting knowledge. Shirakatsi’s methodology was adopted and 
successfully used in Armenia for centuries and in the entire former Soviet Union. It has been proven to 
be very effective. Shirakatsi’s methodology can be adopted and effectively used by elementary school 
teachers in the 21st-century diverse classroom environment. 

 
2. Common Sense in Learning Introductory Mathematics 

 
Some research has been done on using common sense in teaching mathematics. Some authors 
incorrectly identified intuition as similar to common sense [5,6]. ―Very often intuition means an 
elementary, common sense, popular, primitive form of knowledge, as opposed to scientific concepts 
and interpretations.‖ [5] 

According to the Cambridge Dictionary, intuition is ―(knowledge from) an ability to understand or 
know something immediately based on your feelings rather than facts. Often, there’s no clear 
evidence one way or the other, and you must base your judgment on intuition.‖ Also, ―intuition is a 
natural ability or power that makes it possible to know something without any proof or evidence: a 
feeling that guides a person to act a certain way without fully understanding why,‖ according to the 
Merriam-Webster Dictionary. This contradicts definitions of common sense. Merriam-Webster 
Dictionary defines, ―Common sense is sound and prudent judgment based on a simple perception of 
the situation or facts.‖ https://en.wikipedia.org/wiki/Common_sense we read that ―common sense is a 
basic ability to perceive, understand, and judge things, which is shared by ("common to") nearly all 
people, and can be reasonably expected of nearly all people without any need for debate.‖ From 
these, I conclude that intuition and common sense are not the same as it is presented in Fischbein’s 
research. Therefore, the drawn conclusions are about intuition in learning mathematics, not about the 
role of common sense in learning mathematics. In ―The mental ability to cope with the challenges and 



 

opportunities of life,‖ [1] Albrecht defines how common sense is used in life problem solving. It is 
interesting that Albrecht defines common sense as a ―mental ability.‖ 

―School mathematics has historically attempted to mirror what has been seen as the abstract, 
context-free, universal nature of academic mathematics. Consequently, mathematics teaching has 
tended to concentrate on the promotion of skill in handling routine numerical, algebraic, and geometric 
operations divorced from meaningful contexts or realistic applications.‖ [7] I have to disagree with the 
author, who believes that ―academic mathematics‖ is not about understanding, but is a ―skill in 
handling routine‖ operations ―divorced from meaningful contexts.‖ This teaching methodology results 
in learning mathematics by rote, not by understanding. Consequently, students get bored handling 
routine operations they do not understand. Joseph Casbarro expressed a similar opinion that the 
focus of teachers then becomes the coverage of content rather than teaching for understanding. 
―Teachers were converting classrooms into test prep centers.‖ [3] and ―the focus becomes developing 
skills to perform operations without understanding.‖ [3]. Therefore, the above-mentioned teaching 
methodology cannot develop common sense. [10] Moreover, the net effect of such methodologies is 
that students stop using their naturally existing common sense in learning mathematics. 

In [15], there is a discussion on why some adults have stopped using their common sense. ―The 
more we’re trained to think one way (by our workplace, family, culture, etc.), the greater the chance 
that sometimes we allow sloppy or auto-pilot thinking to replace common sense. Common sense isn’t 
a one-stop-destination; it’s a way of thinking that needs constant nourishing and application.‖ [15] I 
conclude that teaching mathematics using common sense cannot be effective in teaching 
mathematics to adults who are accustomed to not using their common sense. However, the same 
methodology can be effective for pre-K, K, and elementary school children who are not yet 
accustomed not to using their common sense. This methodology will teach children to use common 
sense and develop their analytical thinking. 

One experiment on using common sense in learning mathematics is the textbook Common Sense 
Mathematics by Ethan D. Bolker and Maura B. Mast. ―In Common Sense Mathematics, we rarely put 
things to remember in boxes, but the moral of this discussion deserves that treatment: 

In linear growth, the absolute change is constant. 
In exponential growth, the relative change is constant.‖ [2] 
On one hand, the authors try to encourage students to use their common sense. On the other 

hand, they make students memorize two simple concepts. A good, logical definition/explanation of 
linear and exponential growth will help students understand, therefore eliminating its memorization. 
The more students understand, the less they need to memorize. 

―You can understand the numbers in a paragraph from the newspaper only if you understand 
something about the subject it addresses.‖ [2] 

If the person knows nothing about the subject, the numbers will make no sense. However, 
―understanding something about the subject it addresses‖ is not enough ―to understand the numbers.‖ 
Below, I discuss a few examples of problem-solving by adult learners that support my statement.  

 
3. Examples of Problem-Solving by Adult Learners 

 
Throughout the years of teaching mathematics at different colleges, I accumulated a number of 
examples of not using common sense in solving introductory level mathematics problems, in graduate 
level projects, by college professors, and in life. Below, I discuss a few examples. (Some of the below 
problems are taken from textbooks [4,14].) In addition, I showed how to make students think it through 
again by checking their answers before submitting them. For this purpose, I show my version of the 
word problems for each example. Using my versions in teaching mathematics will teach students to 
start using their common sense and develop analytical thinking.  

Example 1. An automobile is sold for $16,400. The sales tax rate is 7%. The total cost of the 
automobile is ______. 

The student arrived at $175,480 while trying to find the 107% of $16,400. The correct answer is 
$17,548. This shows that the student had memorized the technique of calculating the sales tax but 
most probably incorrectly converted the percent to decimal. Having some knowledge of sales tax didn't 
prevent the student from submitting a ten-times larger answer. 

My version.An automobile is sold for $16,400. The sales tax rate is 7%. The total cost of the 
automobile is ______. 

Before submitting your answer, check it by performing the following calculations (using your 
answer). 



 

If the total cost ($16,400+tax) of the automobile is $______ (provide your answer), and it was sold 
for $16,400, then the sales tax amount is $______. The sales tax amount should be (check one) 
— greater than the cost 
— less than the cost. 

If the total cost ($16,400+tax) is $______ (provide your answer), and knowing that the car was 
sold for $16,000, then the sales tax amount (total cost - $16,400) is $______. Then the tax amount is 
______% of $16,400. Compare with the given tax rate. 

Example 2. If you can drive your car 58 miles using 2.5 gallons of gas, how many gallons of gas 
do you need to drive 1 mile? 

The student’s answer was 145 gallons. (The correct answer is 0.04 gallons.) On average, the gas 
tank capacity in cars is 16 gallons. Even not knowing that gas tank capacity is considerably less than 
145 gallons, it had to be obvious that 145 gallons of gas is too much for driving just one mile. 

My version. If you can drive your car 58 miles using 2.5 gallons of gas, how many gallons of gas 
do you need to drive 1 mile? 

Before submitting your answer, check it by performing the following calculations (using your 
answer). 

The gas you need to drive 1 mile should be (check one) 
— greater than the gas you need to drive 58 miles 
— less than the gas you need to drive 58 miles. 

If you use ______ (provide your answer) gallons of gas to drive 1 mile, then you need ______ 
gallons of gas to drive 58 miles. Compare with the given number. 

Example 3. George earns a salary of $38,417.60 per year. If George is paid biweekly, his gross 
paycheck would be ______. 

The student wrote 
Biweekly = (Every 2 weeks) = 26 weeks, and came up with the answer of $998,857.60. (The correct 
answer is $1477.60.) From the student’s answer follows that George will earn close to 1 million dollars 
working just 2 weeks, while working the entire year George earns much less, just $38,417.60. The 
student failed to notice that $998,857.60 is too high for a biweekly paycheck if the annual salary is 
$38,417.60. The biweekly pay is 26 times more than the annual salary. After calculating that George is 
being paid 26 times in a year, the student has multiplied (instead of dividing) George’s annual salary 
by 26. 

My version. George earns a salary of $38,417.60 per year. If George is paid biweekly, his gross 
paycheck would be ______. 

Before submitting your answer, check it by performing the following calculations (using your 
answer). 

George’s annual earnings should be (check one) 
— greater than his biweekly earnings 
— less than his biweekly earnings. 

If George’s gross biweekly paycheck is ______ (provide your answer), his annual salary will be 
______. Compare with the given number. 

In Examples 2 and 3, the students multiplied instead of dividing. This shows that they learned 
about multiplication and division without understanding. That is why they are unsure when to multiply 
or divide, and they choose the operation arbitrarily. These students failed to use the following: 
If a × b = c, then a = c ÷ b, and b = c ÷ a. 

Example 4. The value of B in the equation B-16=27 is ______. 
The student’s answer was 11. (The correct answer is 43.) 
Similar to Examples 2 and 3, Example 4 shows that the student did not understand addition and 

subtraction and how the two arithmetic operations are related. That is, the student failed to use the 
following: 
If a – b = c, then a – c = b and c + b = a.  

My version. The value of B in the equation B-16=27 is ______. 
Before submitting your answer, check it by performing the following calculations (using your answer). 
B should be (check one) 
— greater than 27 
— less than 27. 
______ (provide your answer) - 16= ______. Compare with the given number. 

Let us discuss a few examples from open book tests of elementary Mathematics for Business 
course. 

Example 5. A $1,000.00 bond with a price of 102 ¼ sells for ______. 



 

 
The student’s answer was 300. (The correct answer is $1,022.50.) This problem can be solved by 

performing one operation with percent. It is unclear what calculations were done to the given numbers 
1,000 and 102 ¼ % and how the student arrived at the answer 300. This shows that the student was 
fully lost. Understanding that the answer has to be greater than 1,000 because 102 ¼ % is larger than 
100% could prevent the student from submitting the incorrect answer. 

My version. A $1,000.00 bond with a price of 102 ¼ sells for ______. 
Before submitting your answer, check it by performing the following calculations (using your 

answer). 
102 ¼% of $1,000.00 should be (check one) 
— greater than $1,000.00 
— less than $1,000.00. 

If 102 ¼ percent of $1,000.00 is ______ (provide your answer), then the price of the bond is 
______. Compare with the given number. 

Example 6. Wilson paid $14,560.00 interest on 3.5 year 13% simple interest loan. The principal of 
the loan was ______. 

Having some knowledge of principal and interest didn't prevent the student from submitting the 
answer of $1,892.80. (The correct answer is $32,000.) In this problem, the product (I – interest) and 
the two factors (R – rate and T – time) are given, and it is required to find the third factor (P – principal) 
using the formula I=PRT. Similar to Examples 2 and 3, I see a lack of understanding of the meaning of 
multiplication and division and how the two arithmetic operations are related. The student failed to use 
the following: 
If a × b × c = d, then a = d ÷ (b × c), b = d ÷ (a × c), and c = d ÷ (a × b). 

My version. Wilson paid $14,560.00 interest on 3.5 year 13% simple interest loan. The principal 
of the loan was ______. 

Before submitting your answer, check it by performing the following calculations (using your 
answer). 

The interest paid in a year is $14,560.00÷3.5=$4160, which is 13% of the principal. The interest 
paid in a year at a 13% rate should be (check one) 
— greater than the principal 
— less than the principal. 

If the loan's principal was ______ (provide your answer), then the interest earned in 3.5 years at a 
13% rate (use the I=PRT formula) is ______. Compare with the given number.  

 
4. Solving More Complex Problems 

 
In Section 3, I showed that students are having trouble understanding the use of basic arithmetic 
operations (+, -, ×, or ÷). Can they be successful in solving more complex word problems? Students, 
being accustomed to performing just one basic arithmetic operation to solve word problems, get 
confused when the solution requires performing more than one arithmetic operation. Let us examine a 
few more examples from the elementary Mathematics for Business [4] course that support my above 
statement. 

Example 7. ______ is the compound interest on $2,460.00 at 8% compounded quarterly for 2 
years. 

The student’s answer was $5116.80. (The correct answer is $422.28.) This problem can be solved 
by performing two operations using a number from a provided table. The student failed to understand 
that if the interest compounded in 2 years is more than twice the principal, then the interest rate should 
be around 100%. 

My version. ______ is the compound interest on $2,460.00 at 8% compounded quarterly for 2 
years. 

Before submitting your answer, check it by performing the following calculations (using your 
answer). 
The interest on $2,460.00 at 8% compounded quarterly for 2 years should be (check one) 
— greater than the principal 
— less than the principal. 

If the annual interest is 8% compounded quarterly, then the rate per period will be ______%. The 
interest for the 1st quarter will be $______, and for the 2nd quarter will be $______. After comparing 
interests for the 1st and 2nd quarters, do you think that the interest on $2,460.00 at 8% compounded 
quarterly for 2 years can be $______ (provide your answer)? 



 

Example 8. A machine costs $24,900.00 and has a salvage value of $1,000.00. If the estimated 
useful life is 50,000 hours, the unit depreciation would be ______. 

The student’s answer was $6000. (The correct answer is $0.478.) This problem can be solved by 
performing two operations. The student failed to estimate that if the machine depreciates by $6000 per 
hour, then after 4 hours, the cost of the machine will be less than the salvage value. That is, the 
machine’s useful life is less than 4 hours, while it is given that the estimated useful life is 50,000 hours. 

My version. A machine costs $24,900.00 and has a salvage value of $1,000.00. If the estimated 
useful life is 50,000 hours, the unit depreciation would be ______. 

Before submitting your answer, check it by performing the following calculations (using your 
answer). 

If the machine depreciates by $______ (provide your answer) per hour, then the depreciation 
amount in 50,000 hours should be (check one) 
— greater than the cost of the machine 
— less than the cost of the machine. 

If the depreciation amount is $24,900.00 – $1,000.00 =$23,900.00, and the machine depreciates 
by $______ (provide your answer) an hour, then the useful life of the machine will be ______ hours. 
Compare with the given number. 

Example 9. An office employs 157 people. It is estimated that each person will use 2 pencils 
every week. How many pencils will be used in the office each year? 

The student performed just one operation, that is, multiplied the number of people by the number 
of pencils used in a week, and came up with the answer 314 which is the number of pencils that will 
be used in the office in a week, not in a year. (The correct answer is 16,328.) The student failed to see 
that each person per year will use 52×2=104 pencils. Therefore, 157 people in 52 weeks will use 
much more than 314 pencils. This example shows that students are accustomed to solving problems 
with just one operation. 

My version. An office employs 157 people. It is estimated that each person will use 2 pencils 
every week. How many pencils will be used in the office each year? 

Before submitting your answer, check it by performing the following calculations (using your 
answer). 

If each person will use 2 pencils every week, then 157 people will use ______ pencils in a week. 
The number of pencils that will be used in the office in a year (in 52 weeks) should be (check one) 
— greater than the number of pencils that will be used in the office in a week 
— less than the number of pencils that will be used in the office in a week. 

If each person will use 2 pencils every week, then each person will use ______ pencils each year 
(in 52 weeks). The number of pencils that will be used in the office in a year (in 52 weeks) by 157 
people should be (check one) 
— greater than the number of pencils that each person will use in a year 
— less than the number of pencils that each person will use in a year. 

If in the office each year will be used ______ (provide your answer) pencils, then ______ pencils 
will be used in the office each week. Knowing that the office employs 157 people, then each person 
will use ______ pencils every week. Compare with the given number. 

Example 10. Betty's Bakery sells 3 times as many loaves of bread as homemade pies. Bread 
sells for $2 a loaf and pies sell for $7.50 each. If sales were $1,701.00, the total amount of bread sold 
was ______ loaves. 

The student’s answer was 6,378.75. (The correct answer is 378.) The fact that the answer was not 
a whole number (6,378.75 loaves) did not prevent the student from submitting the incorrect answer. 
This shows that the student did not use any common sense while solving this problem. Furthermore, 
the student failed to understand that the sales from more than 6,000 loaves at $2 each will be more 
than $12,000 which is 7 times larger than the sales ($1,701.00). 

My version. Betty's Bakery sells 3 times as many loaves of bread as homemade pies. Bread sells 
for $2 a loaf and pies sell for $7.50 each. If sales were $1,701.00, the total amount of bread sold was 
______ loaves. 

Before submitting your answer, check it by performing the following calculations (using your 
answer). 

The sale from ______ loaves at $2 each should be (check one) 
— greater than the total sales 
— less than the total sales. 



 

If Betty's Bakery sold ______ (provide your answer) bread loaves, then ______ homemade pies 
were sold. The sale of bread was $______, and the sale of pies was $______. The total sale was 
$______. Compare with the given number. 

Example 11. Jim's Small Appliance Store ordered 80 toasters costing $1,800.00. The four-slice 
toaster costs $24.00 and the two-slice costs $20.00. The total number of four-slice toasters ordered 
was ______. 

The student’s answer was 1200. (The correct answer is 50.) 1200 is 15 times larger number than 
the total number of toasters ordered. Using common sense the student could notice that if the number 
of ordered toasters is 80, then the number of ordered four-slice toasters cannot be 1200. 

My version. Jim's Small Appliance Store ordered 80 toasters costing $1,800.00. The four-slice 
toaster costs $24.00 and the two-slice costs $20.00. Out of the ordered 80 toasters ______ were four-
slice toasters. 

Before submitting your answer, check it by performing the following calculations (using your 
answer). 

The number of ordered four-slice toasters should be (check one) 
— greater than the total number of ordered toasters 
— less than the total number of ordered toasters. 

If the number of four-slice toasters ordered was ______ (provide your answer), then, knowing that 
the store ordered 80 toasters, the number of two-slice toasters ordered was ______. The cost of four-
slice toasters was $______, and the cost of two-slice toasters was $______, then the total cost of 
ordered 80 toasters was $______. Compare with the given number. 

Below are two examples from a Statistics course [14]. 
Example 12. Here is a probability distribution for the number of candy bars sold at a house by a 

child. 
x P(X=x) 

0 0.3 

1 0.15 

2 0.2 

3 0.25 

4 0.1 

 

How many candy bars should a child expect to sell at a house? 

The student’s answer was 10 (The correct answer is 1.7.), although the total number of 

candy bars the child had and could sell was 4. Similar to Example 11, using common sense 

the student could notice that the child cannot expect to sell at a house 10 candy bars if the 

child has only 4. 

My version. Here is a probability distribution for the number of candy bars sold at a 

house by a child. 
x P(X=x) 

0 0.3 

1 0.15 

2 0.2 

3 0.25 

4 0.1 

At a house, the child should expect to sell ______ of her/his 4 candy bars. The number of candy 
bars the child expects to sell should be (check one) 
— greater than the number of candy bars the child has 
— less than the number of candy bars the child has. 

In Examples 1 – 8, I see why students did not arrive at the correct answers, while in Examples 9 – 
12 it is obvious that the students were fully confused. This proves my above statement, that solving 
more complex word problems is more challenging for students, than word problems that require 
performing just one arithmetic operation. 



 

Here are two examples from life without comments. 
Example 13. On the first day of one of my classes, we were discussing the syllabus when one of 

the students sitting in the classroom, in the first row, said, ―Professor, I didn’t know that the class is 
going to be online.‖ 

Example 14. Manhattan M15 bus runs on First Avenue from south to north, crossing all the 
streets from 1st to 126th. One day, I was on the M15 bus going to 43rd Street. Because I was reading, 
I hadn’t paid attention to how close I was to my destination, and asked a middle age Manhattanite, 
―Where are we?‖ She responded, ―On First Avenue.‖ 

Example 15. Years ago, two college professors asked me to read their article and share with them 
my thoughts. One of them had a Ph.D. degree in business, and the other professor had a Ph.D. 
degree in social sciences. They together were in a foreign country, teaching at a university with high 
tuition, located in the largest city of the country, and it was required to have a master’s degree to be 
admitted to that university. The two professors had put together a questionnaire and asked their 
students to respond. The results of the survey they had generalized to the whole country. After I read 
their article my question was, ―Your students were 22- to 30-year-old wealthy men and women with 
master’s degrees from the largest city in the country. Have you surveyed the elderly, children, middle-
aged, uneducated, villagers, poor people, etc? Your results are from a sample, which does not 
represent the whole population. How could you generalize the results of the survey for the entire 
country?‖ Needless to say that they were not happy to hear my feedback. How much knowledge in 
statistics do the two professors need to have for understanding that it was wrong to generalize those 
results? I think just a bit of common sense could help to understand that the 22- to 30-year-old wealthy 
educated city habitats cannot represent the whole country. 

Examples 13, 14, and 15 are just three of numerous similar cases showing that some people do 
not use common sense not only in learning mathematics but also in their everyday lives. 
 
5. Conclusion 

 
From these examples, I conclude that students had learned about addition and subtraction, 
multiplication and division, without understanding, and hadn’t learned how these arithmetic operations 
are related. That is why they are not sure which operation to perform, addition or subtraction, 
multiplication or division. They choose the operation arbitrarily. That is, students are having trouble 
understanding the use of basic arithmetic operations. 

Without a basic knowledge of mathematics, learning more complex topics becomes challenging, 
and understanding becomes almost impossible. The use of common sense will help students to avoid 
providing meaningless answers. 

Moreover, students, besides not using their common sense while solving mathematical problems, 
they are also lacking an understanding of how large or small the numbers are. That is, students do not 
estimate the numbers, to check the correctness of their answer. This is another proof that students 
were taught mathematics by memorization and rote, not by understanding. Consequently, students 
form an opinion that thinking is not required in learning mathematics. This reminded me of the reaction 
of two students (from different colleges) to my efforts to help them to understand math topics. They 
both said, ―Please, don’t make me think.‖ 

 
6. Which Came First Chicken or Egg? 

 
The more general question is the following: Do we use common sense to teach mathematics, or do we 
use mathematics to teach to use common sense? This question is similar to the question ―Which 
came first chicken or egg?‖ This has vexed philosophers since the Greeks. I believe the chicken was 
created first. One answer is for sure; we need both. We need a sufficient number of chickens to make 
the necessary amount of eggs that will produce enough chickens, etc. Similarly, both using common 
sense and learning mathematics are equally important. We need to develop the habit of using 
naturally existing common sense while learning mathematics. Studying introductory mathematics 
using common sense will develop analytical thinking. Students with better analytical skills will have a 
far better experience learning upper-level mathematics. 

Common sense and analytical thinking skills are essential not only in learning mathematics but 
also in solving real-life problems. ―Reflex or associative thinking. This is reactive thinking that is based 
simply on what we’ve learned through life, reenacting learned models and applying them to each new 
situation as it appears, without modifying the thought processes being applied. This type of thinking 



 

leads to errors in thinking because we refuse to push beyond standard associations formed in our 
mind about how things ―should be‖. When we apply what we know to a present situation by reference 
to a similar past situation by merely applying our mind’s template without adjusting for the context, 
we’re overriding common sense. Even where this template is a bad fit, the insistent or biased mind just 
ignores the parts of the template that don’t fit by trimming them off mentally and only seeing the parts 
that ―match‖. Hence, we have our problem solved without thinking it through. This type of thinking 
tends to make us easily swayed by current popular theories and fads, such as the current tendency in 
some societies to control social opinion through inflating fears of germs, criminals and terrorists, and 
job unavailability.‖ [15] Therefore, developed common sense will help to stop judging the same way 
about almost all situations. It will ―push‖ the mind away from associations formed by prior life 
experiences, thus preventing to make mistakes in life problems, enriching life experience with new, 
correctly solved life problems. That is, learning mathematics through understanding will develop 
analytical thinking skills, and will prepare them for solving more complex real-life, business, and 
mathematical problems. 
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