As part of the design education at Offenburg University, the teaching in technical documentation is continuously optimised. In this study, numerous mechanical engineering students, ages 19 to 29, are observed using the eye tracking technology and a video camera while performing various design exercises. The aim of the study is to enhance the students’ ability to read, understand and analyse complex engineering drawings.
In one experiment, the students are asked to perform the “cube perspective test” after Stumpf and Fay to assess their ability for mental rotation as part of spatial visualisation ability.
Furthermore, the students are asked to prepare and give micro presentations on a topic related to their studies. Students have a maximum of 100 s time for these presentations. Thus, they can practise presenting important information in a short amount of time, show their rhetorical skills and demonstrate their acquisition of basic knowledge. During the presentation, the eye movement of a few selected students is recorded to analyse their information acquisition.
In a further test, the students’ eye movements are analysed while reading an engineering drawing that consists of multiple views. All the spatial connections have to be included based on the different component views. Including these and their acquired knowledge, the students are asked to identify the correct representation of a component view.
Furthermore the subjects are describing the function of an assembly, a parallel gripper and then they are to mentally disassemble the assembly to replace a damaged cylindrical pin. Simultaneously, they are filmed using a video camera to see which terms the students use for the individual technical terms.
The evaluation of the eye movements shows that the increasing digitalisation of society and the use of electronic devices in everyday life lead to fast and only selective perceptual behaviour and that students feel insecure when dealing with technical drawings. The analysis of the videos shows a mostly non-technical and inaccurate manner of expression and a poor use of technical terms. The transferability of the achieved results to other technical tasks is part of further investigations.
Keywords: Engineering education in the age of digitalization, design education, technical drawings, spatial imagination, presentation skills, eye tracking;