New Perspectives in Science Education

Edition 13

Accepted Abstracts

A Teacher Education Approach for Integrated Science Instruction

Jasper Cirkel, Georg-August-Universität Göttingen, Faculty of Physics (Germany)

Sabina Eggert, Georg-August-Universität Göttingen (Germany)

Susanne Bögeholz, Georg-August-Universität Göttingen (Germany)

Susanne Schneider, Georg-August-Universität Göttingen (Germany)

Thomas Waitz, Georg-August-University Göttingen (Germany)

Stefan Halverscheid, Georg-August-Universität Göttingen (Germany)


Integrated science education – the combination of the subjects Biology, Chemistry and Physics – is currently considered in discussions on the German school system. Various implementations exist in different federal states for students of grades 5-10. The teaching personnel are confronted with additional demands with regard to subject manner, organization and didactics. As of now, teacher education in Germany focuses on the individual subjects and does not properly prepare for the demands of integrated science education.

This talk presents an additional qualification certificate of 16 ECTS for university students in a Bachelor and Master of Education programme. To be eligible, participants must study at least one natural science as their future subject at school. Within the programme students first take introductory classes designed to make them familiar with school-relevant content knowledge of the remaining disciplines. This focus is needed because the depth and rigor of an entire discipline cannot be implemented within the scope of the qualification programme. Students are also introduced to foundational didactic concepts of all sciences. After completing the taught courses on integrated science teaching, participants then design a teaching-unit in interdisciplinary groups and put the unit (and themselves) to test in a school environment.

The certificate thus aims at developing a perspective for pre-service science teacher of integrated science education. For this objective best practice teaching-units improve content knowledge and pedagogical content knowledge on integrated science.


[1] Jansen, M., Schroeders, U., Lüdtke, O., Anand Pant, H.: Interdisziplinäre Beschulung und die Struktur des akademischen Selbstkonzepts in den naturwissenschaftlichen Fächern. Z. für Pädagog. Psychol. 28, 43–49 (2014).
[2] Graube, G., Mammes, I., Tuncsoy, M.: Natur und Technik in der gymnasialen Orientierungsstufe. Zur Notwendigkeit eines interdisziplinären Ansatzes. MNU. 66, 176–179 (2013).
[3] Busch, M., Woest, V.: Potenzial und Grenzen von fächerübergreifendem NaWi-Unterricht - aus Perspektive der Lehrenden. In: Höttecke, D. (ed.) GDCP Jahrestagung in München 2013. pp. 445–7. Lit, Münster (2014).
[4] Lohmar, B., Eckhardt, T. eds: The Education System in the Federal Republic of Germany 2013/2014. A description of the responsibilities, structures and developments in education policy for the exchange of information in Europe. Secretariat of the Standing Conference of the Ministers of Education and Cultural Affairs of the Länder in the Federal Republic of Germany, Bonn (2015).
[5] Schecker, H., Parchmann, I.: Standars and competence models: the German situation. In: Waddington, D.J., Nentwig, P., and Schanze, S. (eds.) Making it comparable - Standards in science education. pp. 147–64. Waxmann, Münster (2007).
[6] Köller, O., Parchmann, I.: Competencies: The German notion of learning outcomes. In: Bernholt, S., Neumann, K., and Nentwig, P. (eds.) Making it tangible. Learning outcomes in science education. pp. 165–185. Waxmann, Münster (2012).
[7] Krapp, A., Prenzel, M.: Research on Interest in Science: Theories, methods, and findings. Int. J. Sci. Educ. 33, 27–50 (2011). 
[8] Potvin, P., Hasni, A.: Interest, motivation and attitude towards science and technology at K-12 levels: a systematic review of 12 years of educational research. Stud. Sci. Educ. 50, 85–129 (2014).
[9] Renninger, K.A., Hidi, S.: Revisiting the Conceptualization, Measurement, and Generation of Interest. Educ. Psychol. 46, 168–184 (2011).
[10] Hofstein, A., Eilks, I., Bybee, R.: Societal issues and their importance for contemporary science education - A pedagogical justification and the state-of-the-art in Israel, Germany, and the USA. Int. J. Sci. Math. Educ. 9, 1459–1483 (2011).
[11] Jenkins, E.W.: The student voice and school science education. Stud. Sci. Educ. 42, 49–88 (2006).
[12] Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., Ralle, B., Group,  the C.P.: Chemie im Kontext’’: A symbiotic implementation of a context-based teaching and learning approach. Int. J. Sci. Educ. 28, 1041–1062 (2006).
[13] Czerniak, C.M.: Interdisciplinary science teaching. In: Abell, S.K. and Lederman, N.G. (eds.) Handbook of research on science education. pp. 537–559. Lawrence Erlbaum Associates, Mahwah (2007).
[14] Labudde, P. ed: Naturwissenschaften vernetzen - Horizonte erweitern: fächerübergreifender Unterricht konkret. Klett/Kallmeyer, Seelze-Velber (2008).
[15] Rehm, M., Bünder, W., Hass, T., Buck, P., Labudde, P., Brovelli, D., Östergaard, E., Rittersbacher, C., Wilhelm, M., Gensenberger, R., Svoboda, G.: Legitimationen und Fundamente eines integrierten Unterrichtsfachs Science. Z. für Didakt. Naturwiss. 14, 99–123 (2008).
[16] Glynn, S.M., Bryan, R.R., Brickman, P., Armstrong, N.: Intrinsic Motivation, Self Efficacy, and Interest in Science. In: Renninger, K.A., Nieswandt, M., and Hidi, S. (eds.) Interest in mathematics and science learning. pp. 189–202. American Educational Research Association, Washington, DC (2015).
[17] Sjøberg, S., Schreiner, C.: The ROSE project An overview and key findings. University of Oslo (2010).
[18] Labudde, P.: Fächer übergreifender Unterricht in und mit Physik: Eine zu wenig genutzte Chance. PhyDid Phys. Didakt. Sch. Hochsch. 1, 48–66 (2003).
[19] Bennett, J., Lubben, F., Hogarth, S.: Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Sci. Educ. 91, 347–370 (2006).
[20] Åström, M.: Defining integrated science education and putting it to test, (2008).
[21] Lagler, E., Wilhelm, M.: Zusammenhang von Schülerleistung und Fachausbildung der Lehrkräfte in den Naturwissenschaften. Chim. Etc Didact. 38, 47–70 (2013).
[22] Abell, S.K.: Research on Science Teacher Knowledge. In: Abell, S.K. and Lederman, N.G. (eds.) Handbook of research on science education. pp. 1105–49. Lawrence Erlbaum Associates, Mahwah, N.J. (2007).
[23] Smithers, A., Robinson, P.: Physics in schools and universities II: patterns and policies. Carmichael, Buckingham (2006).
[24] Laugksch, R.C.: Scientific Literacy: A Conceptual Overview. Sci. Educ. 84, 71–94 (2000).
[25] Küster, J.M.: Integrierter Naturwissenschaftlicher Unterricht -Stand der Diskussion und. Desiderate aus heutiger Sicht. MNU. 67, 109–112 (2014).
[26] Brovelli, D.: Integrierte naturwissenschaftliche Lehrerbildung – Entwicklung professioneller Kompetenz bei Lehramtsstudierenden. Z. für Didakt. Naturwissenschaften. 20, 21–32 (2014).
[27] Bolte, C., Ramseger, J.: „Integrierte Naturwissenschaftliche Bildung“ als Studienfach. Naturwissenschaften im Unterr. Chem. 130/131, 92–94 (2012).

Back to the list


Reserved area

Media Partners:

Click BrownWalker Press logo for the International Academic and Industry Conference Event Calendar announcing scientific, academic and industry gatherings, online events, call for papers and journal articles
Pixel - Via Luigi Lanzi 12 - 50134 Firenze (FI) - VAT IT 05118710481
    Copyright © 2024 - All rights reserved

Privacy Policy